Full wwPDB X-ray Structure Validation Report

Feb 15, 2017 – 02:31 am GMT

PDB ID : 3SE6
Title : Crystal structure of the human Endoplasmic Reticulum Aminopeptidase 2
Authors : Birtley, J.R.; Saridakis, E.; Stratikos, E; Mavridis, I.M.
Deposited on : 2011-06-10
Resolution : 3.08 Å (reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org
A user guide is available at http://wwpdb.org/validation/2016/XrayValidationReportHelp
with specific help available everywhere you see the symbol.

The following versions of software and data (see references) were used in the production of this report:

- MolProbity : 4.02b-467
- Mogul : 1.7.2 (RC1), CSD as538be (2017)
- Xtriage (Phenix) : 1.9-1692
- EDS : trunk28620
- Percentile statistics : 20161228.v01 (using entries in the PDB archive December 28th 2016)
- Refmac : 5.8.0135
- CCP4 : 6.5.0
- Ideal geometry (proteins) : Engh & Huber (2001)
- Ideal geometry (DNA, RNA) : Parkinson et al. (1996)
- Validation Pipeline (wwPDB-VP) : recalc28949
1 Overall quality at a glance

The following experimental techniques were used to determine the structure:

X-RAY DIFFRACTION

The reported resolution of this entry is 3.08 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

<table>
<thead>
<tr>
<th>Metric</th>
<th>Whole archive (#Entries)</th>
<th>Similar resolution (#Entries, resolution range(Å))</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_{free}</td>
<td>100719</td>
<td>1116 (3.10-3.06)</td>
</tr>
<tr>
<td>Clashscore</td>
<td>112137</td>
<td>1220 (3.10-3.06)</td>
</tr>
<tr>
<td>Ramachandran outliers</td>
<td>110173</td>
<td>1176 (3.10-3.06)</td>
</tr>
<tr>
<td>Sidechain outliers</td>
<td>110143</td>
<td>1176 (3.10-3.06)</td>
</tr>
<tr>
<td>RSRZ outliers</td>
<td>101464</td>
<td>1123 (3.10-3.06)</td>
</tr>
</tbody>
</table>

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments on the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5%

The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Length</th>
<th>Quality of chain</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>967</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>43%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>39%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10%</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>967</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>39%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>41%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>11%</td>
</tr>
</tbody>
</table>

The following table lists non-polymeric compounds, carbohydrate monomers and non-standard residues in protein, DNA, RNA chains that are outliers for geometric or electron-density-fit criteria:
<table>
<thead>
<tr>
<th>Mol</th>
<th>Type</th>
<th>Chain</th>
<th>Res</th>
<th>Chirality</th>
<th>Geometry</th>
<th>Clashes</th>
<th>Electron density</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>NAG</td>
<td>A</td>
<td>1073</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td>5</td>
<td>NAG</td>
<td>A</td>
<td>1075</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td>5</td>
<td>NAG</td>
<td>B</td>
<td>1081</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td>7</td>
<td>MAN</td>
<td>B</td>
<td>1079</td>
<td>X</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>MAN</td>
<td>B</td>
<td>1080</td>
<td>X</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
2 Entry composition

There are 8 unique types of molecules in this entry. The entry contains 14348 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

- Molecule 1 is a protein called Endoplasmic reticulum aminopeptidase 2.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>ZeroOcc</th>
<th>AltConf</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>869</td>
<td>Total C N O S</td>
<td>2</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>859</td>
<td>Total C N O S</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

There are 18 discrepancies between the modelled and reference sequences:

<table>
<thead>
<tr>
<th>Chain</th>
<th>Residue</th>
<th>Modelled</th>
<th>Actual</th>
<th>Comment</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2</td>
<td>VAL</td>
<td>PHE</td>
<td>ENGINEERED MUTATION</td>
<td>UNP Q6P179</td>
</tr>
<tr>
<td>A</td>
<td>392</td>
<td>ASN</td>
<td>LYS</td>
<td>SEE REMARK 999</td>
<td>UNP Q6P179</td>
</tr>
<tr>
<td>A</td>
<td>961</td>
<td>ARG</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q6P179</td>
</tr>
<tr>
<td>A</td>
<td>962</td>
<td>HIS</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q6P179</td>
</tr>
<tr>
<td>A</td>
<td>963</td>
<td>HIS</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q6P179</td>
</tr>
<tr>
<td>A</td>
<td>964</td>
<td>HIS</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q6P179</td>
</tr>
<tr>
<td>A</td>
<td>965</td>
<td>HIS</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q6P179</td>
</tr>
<tr>
<td>A</td>
<td>966</td>
<td>HIS</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q6P179</td>
</tr>
<tr>
<td>A</td>
<td>967</td>
<td>HIS</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q6P179</td>
</tr>
<tr>
<td>B</td>
<td>2</td>
<td>VAL</td>
<td>PHE</td>
<td>ENGINEERED MUTATION</td>
<td>UNP Q6P179</td>
</tr>
<tr>
<td>B</td>
<td>392</td>
<td>ASN</td>
<td>LYS</td>
<td>SEE REMARK 999</td>
<td>UNP Q6P179</td>
</tr>
<tr>
<td>B</td>
<td>961</td>
<td>ARG</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q6P179</td>
</tr>
<tr>
<td>B</td>
<td>962</td>
<td>HIS</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q6P179</td>
</tr>
<tr>
<td>B</td>
<td>963</td>
<td>HIS</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q6P179</td>
</tr>
<tr>
<td>B</td>
<td>964</td>
<td>HIS</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q6P179</td>
</tr>
<tr>
<td>B</td>
<td>965</td>
<td>HIS</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q6P179</td>
</tr>
<tr>
<td>B</td>
<td>966</td>
<td>HIS</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q6P179</td>
</tr>
<tr>
<td>B</td>
<td>967</td>
<td>HIS</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q6P179</td>
</tr>
</tbody>
</table>

- Molecule 2 is ZINC ION (three-letter code: ZN) (formula: Zn).

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>ZeroOcc</th>
<th>AltConf</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>B</td>
<td>1</td>
<td>Total Zn</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>ZeroOcc</th>
<th>AltConf</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>A</td>
<td>1</td>
<td>Total Zn</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

- Molecule 3 is LYSINE (three-letter code: LYS) (formula: C$_6$H$_{15}$N$_2$O$_2$).

![LYS](image)

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>ZeroOcc</th>
<th>AltConf</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>A</td>
<td>1</td>
<td>Total C N O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>1</td>
<td>Total C N O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td>6</td>
<td>2</td>
</tr>
</tbody>
</table>

- Molecule 4 is a polymer of unknown type called SUGAR (2-MER).

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>ZeroOcc</th>
<th>AltConf</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>A</td>
<td>2</td>
<td>Total C N O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>28</td>
<td>16</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>2</td>
<td>Total C N O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>28</td>
<td>16</td>
<td>2</td>
</tr>
</tbody>
</table>

- Molecule 5 is SUGAR (N-ACETYLD-GLUCOSAMINE) (three-letter code: NAG) (formula: C$_8$H$_{15}$NO$_6$).
Molecule 6 is 2-(N-MORPHOLINO)-ETHANESULFONIC ACID (three-letter code: MES) (formula: C_{6}H_{13}NO_{4}S).
- Molecule 7 is a polymer of unknown type called SUGAR (4-MER).

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>ZeroOcc</th>
<th>AltConf</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>A</td>
<td>1</td>
<td>Total C N O S</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>12 6 1 4 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>B</td>
<td>1</td>
<td>Total C N O S</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>12 6 1 4 1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Molecule 8 is water.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>ZeroOcc</th>
<th>AltConf</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>B</td>
<td>4</td>
<td>Total C N O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>50 28 2 20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>A</td>
<td>73</td>
<td>Total O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>73 73</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>B</td>
<td>53</td>
<td>Total O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>53 53</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3 Residue-property plots

These plots are drawn for all protein, RNA and DNA chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

- Molecule 1: Endoplasmic reticulum aminopeptidase 2

Chain A:
• Molecule 1: Endoplasmic reticulum aminopeptidase 2

Chain B:
4 Data and refinement statistics

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Space group</td>
<td>P 1 21 1</td>
<td>Depositor</td>
</tr>
<tr>
<td>Cell constants</td>
<td>a, b, c, α, β, γ</td>
<td>Depositor</td>
</tr>
<tr>
<td>Resolution (Å)</td>
<td>11.00 – 3.08</td>
<td>Depositor</td>
</tr>
<tr>
<td>% Data completeness (in resolution range)</td>
<td>94.3 (11.00-3.08)</td>
<td>Depositor</td>
</tr>
<tr>
<td>Refinement program</td>
<td>PHENIX (phenix.refine)</td>
<td>Depositor</td>
</tr>
<tr>
<td>Rmerge (Not available)</td>
<td></td>
<td>Depositor</td>
</tr>
<tr>
<td>Rsym (Not available)</td>
<td></td>
<td>Depositor</td>
</tr>
<tr>
<td>< I/σ(I) >¹</td>
<td>2.21 (at 3.09Å)</td>
<td>Xtriage</td>
</tr>
<tr>
<td>Wilson B-factor (Å²)</td>
<td>60.6</td>
<td>Xtriage</td>
</tr>
<tr>
<td>Anisotropy</td>
<td>0.260</td>
<td>Xtriage</td>
</tr>
<tr>
<td>Bulk solvent ksol(e/Å³), Bsol(Å²)</td>
<td>0.33 , 70.6</td>
<td>EDS</td>
</tr>
<tr>
<td>Estimated twinning fraction</td>
<td>0.018 for -h,-l,-k</td>
<td>Xtriage</td>
</tr>
<tr>
<td></td>
<td>0.005 for -h,l,k</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.034 for h,-k,-l</td>
<td></td>
</tr>
<tr>
<td>Fo,Fc correlation</td>
<td>0.90</td>
<td>EDS</td>
</tr>
<tr>
<td>Total number of atoms</td>
<td>14348</td>
<td>wwPDB-VP</td>
</tr>
<tr>
<td>Average B, all atoms (Å²)</td>
<td>65.0</td>
<td>wwPDB-VP</td>
</tr>
</tbody>
</table>

Xtriage’s analysis on translational NCS is as follows: *The largest off-origin peak in the Patterson function is 3.00% of the height of the origin peak. No significant pseudotranslation is detected.*

¹Intensities estimated from amplitudes.
²Theoretical values of < |L| >, < L² > for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.
5 Model quality

5.1 Standard geometry

Bond lengths and bond angles in the following residue types are not validated in this section: ZN, NAG, MES, MAN

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Bond lengths</th>
<th>Bond angles</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>RMSZ</td>
<td>#</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>0.40</td>
<td>0/7227</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>0.41</td>
<td>0/7148</td>
</tr>
<tr>
<td>All</td>
<td>All</td>
<td>0.41</td>
<td>0/14375</td>
</tr>
</tbody>
</table>

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>#Chirality outliers</th>
<th>#Planarity outliers</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>B</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

There are no bond length outliers.

All (1) bond angle outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(°)</th>
<th>Ideal(°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>923</td>
<td>ALA</td>
<td>N-CA-C</td>
<td>-5.60</td>
<td>95.88</td>
<td>111.00</td>
</tr>
</tbody>
</table>

All (2) chirality outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atom</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>B</td>
<td>1079</td>
<td>MAN</td>
<td>C1</td>
</tr>
<tr>
<td>7</td>
<td>B</td>
<td>1080</td>
<td>MAN</td>
<td>C1</td>
</tr>
</tbody>
</table>

There are no planarity outliers.
5.2 Too-close contacts

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry related clashes.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Non-H</th>
<th>H(model)</th>
<th>H(added)</th>
<th>Clashes</th>
<th>Symm-Clashes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>7050</td>
<td>0</td>
<td>6987</td>
<td>431</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>6978</td>
<td>0</td>
<td>6946</td>
<td>474</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>10</td>
<td>0</td>
<td>12</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>10</td>
<td>0</td>
<td>12</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>A</td>
<td>56</td>
<td>0</td>
<td>50</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>A</td>
<td>28</td>
<td>0</td>
<td>26</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>B</td>
<td>14</td>
<td>0</td>
<td>13</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>A</td>
<td>12</td>
<td>0</td>
<td>12</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>B</td>
<td>12</td>
<td>0</td>
<td>12</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>B</td>
<td>50</td>
<td>0</td>
<td>43</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>A</td>
<td>73</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>B</td>
<td>53</td>
<td>0</td>
<td>0</td>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>All</td>
<td>All</td>
<td>14348</td>
<td>0</td>
<td>14113</td>
<td>904</td>
<td>0</td>
</tr>
</tbody>
</table>

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 32.

All (904) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:B:56:ALA:HB1</td>
<td>1:B:61:ARG:HA</td>
<td>1.23</td>
<td>1.09</td>
</tr>
<tr>
<td>1:A:56:ALA:HB1</td>
<td>1:A:57:THR:HA</td>
<td>1.34</td>
<td>1.06</td>
</tr>
<tr>
<td>1:B:245:GLU:HG2</td>
<td>1:B:246:GLY:H</td>
<td>1.27</td>
<td>0.98</td>
</tr>
<tr>
<td>1:A:544:GLN:HE21</td>
<td>1:A:584:TYR:HD1</td>
<td>1.16</td>
<td>0.93</td>
</tr>
<tr>
<td>1:B:384:GLU:HA</td>
<td>1:B:489:ASN:HD22</td>
<td>1.32</td>
<td>0.93</td>
</tr>
<tr>
<td>1:A:533:GLU:HG2</td>
<td>1:A:533:GLU:O</td>
<td>1.70</td>
<td>0.92</td>
</tr>
<tr>
<td>1:B:544:GLN:HE21</td>
<td>1:B:584:TYR:HD1</td>
<td>1.16</td>
<td>0.92</td>
</tr>
<tr>
<td>1:B:386:TRP:CD1</td>
<td>1:B:446:ILE:HD13</td>
<td>2.06</td>
<td>0.90</td>
</tr>
<tr>
<td>1:A:138:LYS:HB3</td>
<td>1:A:151:LEU:HB2</td>
<td>1.52</td>
<td>0.89</td>
</tr>
<tr>
<td>1:B:56:ALA:HB1</td>
<td>1:B:61:ARG:CA</td>
<td>2.05</td>
<td>0.86</td>
</tr>
<tr>
<td>1:B:122:LEU:HD11</td>
<td>1:B:162:TYR:HB3</td>
<td>1.57</td>
<td>0.85</td>
</tr>
<tr>
<td>1:A:75:PRO:HG3</td>
<td>1:A:211:PHE:CD1</td>
<td>2.11</td>
<td>0.85</td>
</tr>
</tbody>
</table>

Continued on next page...
<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:A:626:ASP:HA</td>
<td>1:A:657:LYS:HB2</td>
<td>1.58</td>
<td>0.85</td>
</tr>
<tr>
<td>1:B:138:LYS:HD3</td>
<td>1:B:151:LEU:HD2</td>
<td>1.57</td>
<td>0.85</td>
</tr>
<tr>
<td>1:A:465:LEU:HD13</td>
<td>1:A:538:MET:SD</td>
<td>2.17</td>
<td>0.84</td>
</tr>
<tr>
<td>1:B:75:PRO:HD3</td>
<td>1:B:211:PHE:CD1</td>
<td>2.12</td>
<td>0.84</td>
</tr>
<tr>
<td>1:A:386:TRP:CD1</td>
<td>1:A:446:ILE:HD13</td>
<td>2.11</td>
<td>0.84</td>
</tr>
<tr>
<td>1:B:666:VAL:HG21</td>
<td>1:B:683:MET:SD</td>
<td>2.19</td>
<td>0.82</td>
</tr>
<tr>
<td>1:B:152:VAL:HG21</td>
<td>1:B:156:LEU:HD21</td>
<td>1.60</td>
<td>0.82</td>
</tr>
<tr>
<td>1:B:135:LYS:HE2</td>
<td>1:B:153:PRO:HG2</td>
<td>1.62</td>
<td>0.82</td>
</tr>
<tr>
<td>1:A:56:ALA:CB</td>
<td>1:A:57:THR:HA</td>
<td>2.10</td>
<td>0.82</td>
</tr>
<tr>
<td>1:B:677:LEU:HG</td>
<td>1:B:681:LEU:HD23</td>
<td>1.61</td>
<td>0.82</td>
</tr>
<tr>
<td>1:A:384:GLU:HA</td>
<td>1:A:489:ASN:HD22</td>
<td>1.45</td>
<td>0.81</td>
</tr>
<tr>
<td>1:B:817:SER:O</td>
<td>1:B:821:GLN:HG3</td>
<td>1.81</td>
<td>0.81</td>
</tr>
<tr>
<td>1:B:73:VAL:HG11</td>
<td>1:B:108:ILE:HG12</td>
<td>1.61</td>
<td>0.81</td>
</tr>
<tr>
<td>1:B:801:THR:HG23</td>
<td>1:B:804:GLY:H</td>
<td>1.46</td>
<td>0.80</td>
</tr>
<tr>
<td>1:B:258:LYS:HG2</td>
<td>5:B:1081:NAG:HG2</td>
<td>1.61</td>
<td>0.80</td>
</tr>
<tr>
<td>1:A:152:VAL:HG21</td>
<td>1:A:156:LEU:HD21</td>
<td>1.64</td>
<td>0.80</td>
</tr>
<tr>
<td>1:A:801:THR:HG23</td>
<td>1:A:804:GLY:H</td>
<td>1.46</td>
<td>0.80</td>
</tr>
<tr>
<td>1:A:877:ARG:HG3</td>
<td>1:A:917:PHE:CD1</td>
<td>2.17</td>
<td>0.79</td>
</tr>
<tr>
<td>1:A:125:GLU:OE1</td>
<td>1:A:125:GLU:HA</td>
<td>1.80</td>
<td>0.79</td>
</tr>
<tr>
<td>1:A:666:VAL:HG21</td>
<td>1:A:683:MET:SD</td>
<td>2.23</td>
<td>0.79</td>
</tr>
<tr>
<td>1:B:465:LEU:HD13</td>
<td>1:B:538:MET:SD</td>
<td>2.23</td>
<td>0.79</td>
</tr>
<tr>
<td>1:B:604:ILE:HL</td>
<td>1:B:604:ILE:HD12</td>
<td>1.46</td>
<td>0.79</td>
</tr>
<tr>
<td>1:B:877:ARG:HG3</td>
<td>1:B:917:PHE:CD1</td>
<td>2.17</td>
<td>0.79</td>
</tr>
<tr>
<td>1:A:741:ASP:OD2</td>
<td>1:A:787:PRO:HB3</td>
<td>1.82</td>
<td>0.78</td>
</tr>
<tr>
<td>1:A:416:TYR:HD2</td>
<td>1:A:416:TYR:C</td>
<td>1.88</td>
<td>0.77</td>
</tr>
<tr>
<td>1:B:56:ALA:CB</td>
<td>1:B:61:ARG:HA</td>
<td>2.11</td>
<td>0.76</td>
</tr>
<tr>
<td>1:A:817:SER:O</td>
<td>1:A:821:GLN:HG3</td>
<td>1.85</td>
<td>0.76</td>
</tr>
<tr>
<td>1:B:416:TYR:C</td>
<td>1:B:416:TYR:HD2</td>
<td>1.89</td>
<td>0.76</td>
</tr>
<tr>
<td>1:A:662:LEU:O</td>
<td>1:A:666:VAL:HG23</td>
<td>1.85</td>
<td>0.76</td>
</tr>
<tr>
<td>1:B:551:VAL:HG12</td>
<td>1:B:634:HIS:HB3</td>
<td>1.66</td>
<td>0.75</td>
</tr>
<tr>
<td>1:B:741:ASP:OD2</td>
<td>1:B:787:PRO:HB3</td>
<td>1.85</td>
<td>0.75</td>
</tr>
<tr>
<td>1:B:412:GLN:OE1</td>
<td>1:B:746:TRP:HD1</td>
<td>1.70</td>
<td>0.75</td>
</tr>
<tr>
<td>1:A:245:GLU:HG2</td>
<td>1:A:246:GLY:N</td>
<td>2.02</td>
<td>0.75</td>
</tr>
<tr>
<td>1:A:85:ASN:HB3</td>
<td>1:A:88:SER:HB3</td>
<td>1.68</td>
<td>0.75</td>
</tr>
<tr>
<td>1:A:364:VAL:O</td>
<td>1:A:368:ILE:HG13</td>
<td>1.87</td>
<td>0.75</td>
</tr>
<tr>
<td>1:B:421:CYS:O</td>
<td>1:B:424:VAL:HG12</td>
<td>1.87</td>
<td>0.74</td>
</tr>
</tbody>
</table>
Interatomic Clash Overlap Table

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:B:85:ASN:HB3</td>
<td>1:B:88:SER:HB3</td>
<td>1.70</td>
<td>0.74</td>
</tr>
<tr>
<td>4:A:1073:NAG:HB6</td>
<td>4:A:1074:NAG:O5</td>
<td>1.88</td>
<td>0.74</td>
</tr>
<tr>
<td>1:A:421:CYS:O</td>
<td>1:A:424:VAL:HG12</td>
<td>1.88</td>
<td>0.74</td>
</tr>
<tr>
<td>1:B:364:VAL:O</td>
<td>1:B:368:ILE:HG13</td>
<td>1.88</td>
<td>0.73</td>
</tr>
<tr>
<td>1:B:286:ILE:HG21</td>
<td>1:B:296:THR:HB</td>
<td>1.69</td>
<td>0.73</td>
</tr>
<tr>
<td>1:B:838:LEU:HD23</td>
<td>1:B:871:LEU:HD21</td>
<td>1.70</td>
<td>0.73</td>
</tr>
<tr>
<td>1:A:551:VAL:HG12</td>
<td>1:A:634:HIS:HB3</td>
<td>1.70</td>
<td>0.73</td>
</tr>
<tr>
<td>1:B:544:GLN:NE2</td>
<td>1:B:584:TYR:HD1</td>
<td>1.85</td>
<td>0.73</td>
</tr>
<tr>
<td>1:B:662:LEU:O</td>
<td>1:B:666:VAL:HG23</td>
<td>1.89</td>
<td>0.73</td>
</tr>
<tr>
<td>1:A:412:GLN:OE1</td>
<td>1:A:746:TRP:HD1</td>
<td>1.72</td>
<td>0.73</td>
</tr>
<tr>
<td>1:B:104:ALA:HB2</td>
<td>1:B:158:PRO:HD3</td>
<td>1.71</td>
<td>0.72</td>
</tr>
<tr>
<td>1:A:544:GLN:NE2</td>
<td>1:A:584:TYR:HD1</td>
<td>1.85</td>
<td>0.72</td>
</tr>
<tr>
<td>1:A:286:ILE:HG21</td>
<td>1:A:296:THR:HB</td>
<td>1.72</td>
<td>0.72</td>
</tr>
<tr>
<td>1:A:442:THR:HG23</td>
<td>1:A:445:GLN:HG3</td>
<td>1.73</td>
<td>0.71</td>
</tr>
<tr>
<td>1:B:385:TRP:CD1</td>
<td>8:B:1013:HOH:O</td>
<td>2.42</td>
<td>0.71</td>
</tr>
<tr>
<td>1:B:537:MET:O</td>
<td>1:B:540:THR:HG23</td>
<td>1.90</td>
<td>0.71</td>
</tr>
<tr>
<td>1:A:727:LEU:HD21</td>
<td>1:A:761:LEU:HB3</td>
<td>1.72</td>
<td>0.71</td>
</tr>
<tr>
<td>1:A:416:TYR:C</td>
<td>1:A:416:TYR:CD2</td>
<td>2.62</td>
<td>0.71</td>
</tr>
<tr>
<td>1:B:236:MET:CE</td>
<td>1:B:256:THR:HA</td>
<td>2.21</td>
<td>0.70</td>
</tr>
<tr>
<td>1:B:590:LEU:HG</td>
<td>8:B:1014:HOH:O</td>
<td>1.91</td>
<td>0.70</td>
</tr>
<tr>
<td>1:A:319:PRO:HB2</td>
<td>1:A:320:LEU:HD23</td>
<td>1.73</td>
<td>0.70</td>
</tr>
<tr>
<td>1:B:710:MET:HB3</td>
<td>1:B:719:SER:HB3</td>
<td>1.74</td>
<td>0.70</td>
</tr>
<tr>
<td>1:B:731:LYS:HE3</td>
<td>1:B:763:HIS:CE1</td>
<td>2.26</td>
<td>0.70</td>
</tr>
<tr>
<td>1:B:832:LYS:HB3</td>
<td>1:B:867:LYS:HE3</td>
<td>1.72</td>
<td>0.70</td>
</tr>
<tr>
<td>1:A:104:ALA:HB2</td>
<td>1:A:158:PRO:HD3</td>
<td>1.73</td>
<td>0.70</td>
</tr>
<tr>
<td>1:B:319:PRO:HB2</td>
<td>1:B:320:LEU:HD23</td>
<td>1.72</td>
<td>0.70</td>
</tr>
<tr>
<td>1:A:416:TYR:CE2</td>
<td>1:A:419:ASN:HB2</td>
<td>2.27</td>
<td>0.70</td>
</tr>
<tr>
<td>1:A:537:MET:O</td>
<td>1:A:540:THR:HG23</td>
<td>1.91</td>
<td>0.70</td>
</tr>
<tr>
<td>1:B:777:TRP:HB2</td>
<td>1:B:786:ILE:HD11</td>
<td>1.72</td>
<td>0.70</td>
</tr>
<tr>
<td>1:B:385:TRP:C</td>
<td>8:B:1013:HOH:O</td>
<td>2.29</td>
<td>0.69</td>
</tr>
<tr>
<td>1:A:777:TRP:HB2</td>
<td>1:A:786:ILE:HD11</td>
<td>1.75</td>
<td>0.69</td>
</tr>
<tr>
<td>1:B:239:VAL:HG12</td>
<td>1:B:240:LYS:HE3</td>
<td>1.74</td>
<td>0.69</td>
</tr>
<tr>
<td>1:B:634:HIS:HE1</td>
<td>1:B:675:LEU:HD13</td>
<td>1.57</td>
<td>0.69</td>
</tr>
<tr>
<td>1:A:832:LYS:HB3</td>
<td>1:A:867:LYS:HE3</td>
<td>1.75</td>
<td>0.69</td>
</tr>
<tr>
<td>1:B:416:TYR:CE2</td>
<td>1:B:419:ASN:HB2</td>
<td>2.27</td>
<td>0.69</td>
</tr>
<tr>
<td>1:B:604:ILE:HD12</td>
<td>1:B:604:ILE:N</td>
<td>2.07</td>
<td>0.69</td>
</tr>
<tr>
<td>1:B:58:ASN:N</td>
<td>1:B:58:ASN:HD22</td>
<td>1.91</td>
<td>0.68</td>
</tr>
<tr>
<td>1:B:697:LEU:CD1</td>
<td>1:B:750:LEU:HD13</td>
<td>2.23</td>
<td>0.68</td>
</tr>
<tr>
<td>1:A:416:TYR:HD2</td>
<td>1:A:416:TYR:O</td>
<td>1.77</td>
<td>0.68</td>
</tr>
<tr>
<td>1:B:90:ASP:HB3</td>
<td>1:B:171:LYS:HA</td>
<td>1.76</td>
<td>0.68</td>
</tr>
</tbody>
</table>

Continued on next page...
<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:A:634:HIS:HE1</td>
<td>1:A:675:LEU:HD13</td>
<td>1.59</td>
<td>0.68</td>
</tr>
<tr>
<td>1:B:488:ARG:HG2</td>
<td>1:B:489:ASN:H</td>
<td>1.59</td>
<td>0.68</td>
</tr>
<tr>
<td>1:A:272:HIS:CE1</td>
<td>1:A:290:PRO:HB3</td>
<td>2.29</td>
<td>0.67</td>
</tr>
<tr>
<td>1:A:565:ARG:HD2</td>
<td>1:A:584:TYR:CE2</td>
<td>2.29</td>
<td>0.67</td>
</tr>
<tr>
<td>1:A:710:MET:HB3</td>
<td>1:A:719:SER:HB3</td>
<td>1.77</td>
<td>0.67</td>
</tr>
<tr>
<td>1:B:236:MET:HE3</td>
<td>1:B:256:THR:HA</td>
<td>1.75</td>
<td>0.67</td>
</tr>
<tr>
<td>1:A:565:ARG:HD3</td>
<td>1:A:581:GLN:N</td>
<td>2.10</td>
<td>0.67</td>
</tr>
<tr>
<td>1:B:245:GLU:HG2</td>
<td>1:B:246:GLY:N</td>
<td>2.05</td>
<td>0.67</td>
</tr>
<tr>
<td>1:B:812:TYR:CE1</td>
<td>1:B:821:GLN:HB3</td>
<td>2.30</td>
<td>0.67</td>
</tr>
<tr>
<td>1:B:915:LYS:O</td>
<td>1:B:919:GLU:HG2</td>
<td>1.93</td>
<td>0.67</td>
</tr>
<tr>
<td>1:B:135:LYS:HE2</td>
<td>1:B:153:PRO:CG</td>
<td>2.24</td>
<td>0.67</td>
</tr>
<tr>
<td>1:B:924:GLN:O</td>
<td>1:B:926:SER:N</td>
<td>2.27</td>
<td>0.67</td>
</tr>
<tr>
<td>1:A:528:LEU:HB3</td>
<td>1:A:529:GLY:HA2</td>
<td>1.76</td>
<td>0.67</td>
</tr>
<tr>
<td>1:B:398:TYR:OH</td>
<td>1:B:402:ILE:HD11</td>
<td>1.95</td>
<td>0.67</td>
</tr>
<tr>
<td>1:A:727:LEU:HD11</td>
<td>1:A:763:HIS:HB2</td>
<td>1.77</td>
<td>0.67</td>
</tr>
<tr>
<td>1:A:697:LEU:CD1</td>
<td>1:A:750:LEU:HD13</td>
<td>2.25</td>
<td>0.67</td>
</tr>
<tr>
<td>1:A:442:THR:CG2</td>
<td>1:A:445:GLN:HG3</td>
<td>2.26</td>
<td>0.66</td>
</tr>
<tr>
<td>1:A:90:ASP:HB3</td>
<td>1:A:171:LYS:HA</td>
<td>1.76</td>
<td>0.66</td>
</tr>
<tr>
<td>1:B:681:LEU:HB3</td>
<td>1:B:955:TRP:CE2</td>
<td>2.30</td>
<td>0.66</td>
</tr>
<tr>
<td>1:B:727:LEU:HD21</td>
<td>1:B:761:LEU:HB3</td>
<td>1.76</td>
<td>0.66</td>
</tr>
<tr>
<td>1:A:488:ARG:HG2</td>
<td>1:A:489:ASN:H</td>
<td>1.60</td>
<td>0.66</td>
</tr>
<tr>
<td>1:B:58:ASN:ND2</td>
<td>1:B:58:ASN:N</td>
<td>2.42</td>
<td>0.66</td>
</tr>
<tr>
<td>1:B:272:HIS:CE1</td>
<td>1:B:290:PRO:HB3</td>
<td>2.31</td>
<td>0.66</td>
</tr>
<tr>
<td>1:B:338:ASN:HB2</td>
<td>1:B:341:LEU:O</td>
<td>1.96</td>
<td>0.66</td>
</tr>
<tr>
<td>1:A:566:PHE:CE2</td>
<td>1:A:632:ILE:HD12</td>
<td>2.30</td>
<td>0.65</td>
</tr>
<tr>
<td>1:A:338:ASN:HB2</td>
<td>1:A:341:LEU:O</td>
<td>1.96</td>
<td>0.65</td>
</tr>
<tr>
<td>1:B:416:TYR:HD2</td>
<td>1:B:416:TYR:O</td>
<td>1.80</td>
<td>0.65</td>
</tr>
<tr>
<td>1:B:330:ASP:OD1</td>
<td>1:B:851:LYS:HD2</td>
<td>1.96</td>
<td>0.65</td>
</tr>
<tr>
<td>1:B:58:ASN:H</td>
<td>1:B:58:ASN:HD22</td>
<td>1.45</td>
<td>0.65</td>
</tr>
<tr>
<td>1:B:313:TYR:HE2</td>
<td>1:B:478:ILE:HD11</td>
<td>1.62</td>
<td>0.65</td>
</tr>
<tr>
<td>1:A:915:LYS:O</td>
<td>1:A:919:GLU:HG2</td>
<td>1.94</td>
<td>0.65</td>
</tr>
<tr>
<td>1:A:236:MET:HE3</td>
<td>1:A:256:THR:HA</td>
<td>1.79</td>
<td>0.64</td>
</tr>
<tr>
<td>1:A:681:LEU:HB3</td>
<td>1:A:955:TRP:CE2</td>
<td>2.32</td>
<td>0.64</td>
</tr>
<tr>
<td>1:B:416:TYR:C</td>
<td>1:B:416:TYR:CD2</td>
<td>2.63</td>
<td>0.64</td>
</tr>
<tr>
<td>1:A:141:SER:HA</td>
<td>1:A:148:ILE:HG22</td>
<td>1.80</td>
<td>0.64</td>
</tr>
<tr>
<td>1:A:811:GLN:NE2</td>
<td>8:A:1024:HOH:O</td>
<td>2.29</td>
<td>0.64</td>
</tr>
</tbody>
</table>
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:B:918:PHE:CE2</td>
<td>1:B:934:VAL:HG11</td>
<td>2.32</td>
<td>0.64</td>
</tr>
<tr>
<td>1:A:565:ARG:HH11</td>
<td>1:A:581:GLN:HB2</td>
<td>1.62</td>
<td>0.64</td>
</tr>
<tr>
<td>1:A:763:HIS:CD2</td>
<td>1:A:765:PRO:HD2</td>
<td>2.33</td>
<td>0.64</td>
</tr>
<tr>
<td>1:B:588:ILE:HD11</td>
<td>1:B:631:TYR:CG</td>
<td>2.33</td>
<td>0.64</td>
</tr>
<tr>
<td>1:B:777:TRP:HB2</td>
<td>1:B:786:ILE:CD1</td>
<td>2.26</td>
<td>0.64</td>
</tr>
<tr>
<td>1:B:141:SER:HA</td>
<td>1:B:148:ILE:HG22</td>
<td>1.80</td>
<td>0.63</td>
</tr>
<tr>
<td>1:A:278:THR:CG2</td>
<td>1:A:282:VAL:HB</td>
<td>2.28</td>
<td>0.63</td>
</tr>
<tr>
<td>1:B:214:PRO:HG3</td>
<td>1:B:386:TRP:CD2</td>
<td>2.34</td>
<td>0.63</td>
</tr>
<tr>
<td>1:B:622:LYS:NZ</td>
<td>1:B:662:LEU:HG</td>
<td>2.14</td>
<td>0.63</td>
</tr>
<tr>
<td>1:A:533:GLU:CG</td>
<td>1:A:533:GLU:O</td>
<td>2.45</td>
<td>0.63</td>
</tr>
<tr>
<td>1:B:918:PHE:CE2</td>
<td>1:B:931:PHE:HA</td>
<td>2.33</td>
<td>0.63</td>
</tr>
<tr>
<td>1:A:330:ASP:OD1</td>
<td>1:A:851:LYS:HD2</td>
<td>1.98</td>
<td>0.63</td>
</tr>
<tr>
<td>1:A:56:ALA:HB1</td>
<td>1:A:57:THR:CA</td>
<td>2.22</td>
<td>0.63</td>
</tr>
<tr>
<td>1:B:384:GLU:HG2</td>
<td>1:B:489:ASN:HB3</td>
<td>1.81</td>
<td>0.63</td>
</tr>
<tr>
<td>1:B:286:ILE:CG2</td>
<td>1:B:296:THR:HB</td>
<td>2.28</td>
<td>0.62</td>
</tr>
<tr>
<td>1:B:727:LEU:HD11</td>
<td>1:B:763:HIS:HB2</td>
<td>1.80</td>
<td>0.62</td>
</tr>
<tr>
<td>1:A:582:GLU:C</td>
<td>1:A:583:ARG:HG2</td>
<td>2.20</td>
<td>0.62</td>
</tr>
<tr>
<td>1:B:605:LEU:HD12</td>
<td>1:B:606:LYS:N</td>
<td>2.15</td>
<td>0.62</td>
</tr>
<tr>
<td>1:A:830:THR:HB</td>
<td>1:A:865:ARG:HH21</td>
<td>1.64</td>
<td>0.62</td>
</tr>
<tr>
<td>1:B:566:PHE:CE2</td>
<td>1:B:632:ILE:HD12</td>
<td>2.35</td>
<td>0.62</td>
</tr>
<tr>
<td>1:B:56:ALA:HB2</td>
<td>1:B:62:PHE:H</td>
<td>1.64</td>
<td>0.62</td>
</tr>
<tr>
<td>1:B:278:THR:HG23</td>
<td>1:B:282:VAL:H</td>
<td>1.64</td>
<td>0.62</td>
</tr>
<tr>
<td>1:B:323:LEU:HD12</td>
<td>1:B:324:ASP:H</td>
<td>1.64</td>
<td>0.62</td>
</tr>
<tr>
<td>1:A:538:MET:O</td>
<td>1:A:542:THR:HG23</td>
<td>1.98</td>
<td>0.62</td>
</tr>
<tr>
<td>1:B:548:PRO:HG3</td>
<td>1:B:586:TRP:CD2</td>
<td>2.34</td>
<td>0.62</td>
</tr>
<tr>
<td>1:A:615:PRO:O</td>
<td>1:A:616:GLU:HB2</td>
<td>1.99</td>
<td>0.62</td>
</tr>
<tr>
<td>1:A:934:VAL:O</td>
<td>1:A:938:ILE:HG13</td>
<td>2.00</td>
<td>0.62</td>
</tr>
<tr>
<td>1:A:713:ARG:HB3</td>
<td>1:A:715:ILE:HG13</td>
<td>1.82</td>
<td>0.62</td>
</tr>
<tr>
<td>1:B:805:TRP:HH2</td>
<td>1:B:839:LYS:HD3</td>
<td>1.64</td>
<td>0.62</td>
</tr>
<tr>
<td>1:B:713:ARG:HB3</td>
<td>1:B:715:ILE:HG13</td>
<td>1.81</td>
<td>0.61</td>
</tr>
<tr>
<td>1:A:528:LEU:HB3</td>
<td>1:A:529:GLY:CA</td>
<td>2.29</td>
<td>0.61</td>
</tr>
<tr>
<td>1:A:918:PHE:CE2</td>
<td>1:A:931:PHE:HA</td>
<td>2.34</td>
<td>0.61</td>
</tr>
<tr>
<td>1:B:58:ASN:HA</td>
<td>1:B:59:GLY:C</td>
<td>2.21</td>
<td>0.61</td>
</tr>
<tr>
<td>1:A:433:SER:O</td>
<td>1:A:545:LYS:HD3</td>
<td>2.00</td>
<td>0.61</td>
</tr>
<tr>
<td>1:A:548:PRO:HG3</td>
<td>1:A:586:TRP:CD2</td>
<td>2.36</td>
<td>0.61</td>
</tr>
<tr>
<td>1:A:918:PHE:CE2</td>
<td>1:A:934:VAL:HG11</td>
<td>2.36</td>
<td>0.61</td>
</tr>
<tr>
<td>1:B:615:PRO:O</td>
<td>1:B:616:GLU:HB2</td>
<td>2.00</td>
<td>0.61</td>
</tr>
<tr>
<td>1:A:790:VAL:O</td>
<td>1:A:794:VAL:HG23</td>
<td>2.00</td>
<td>0.61</td>
</tr>
<tr>
<td>1:B:67:LEU:HA</td>
<td>1:B:145:HIS:HD2</td>
<td>1.64</td>
<td>0.61</td>
</tr>
</tbody>
</table>
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:A:622:LYS:NZ</td>
<td>1:A:662:LEU:HG</td>
<td>2.15</td>
<td>0.61</td>
</tr>
<tr>
<td>1:A:700:LEU:HD21</td>
<td>1:A:730:PHE:CD1</td>
<td>2.36</td>
<td>0.61</td>
</tr>
<tr>
<td>1:B:119:ASN:O</td>
<td>1:B:166:MET:HA</td>
<td>1.99</td>
<td>0.61</td>
</tr>
<tr>
<td>1:B:697:LEU:HD13</td>
<td>1:B:750:LEU:HD13</td>
<td>1.81</td>
<td>0.60</td>
</tr>
<tr>
<td>1:B:442:THR:CG2</td>
<td>1:B:445:GLN:HG3</td>
<td>2.31</td>
<td>0.60</td>
</tr>
<tr>
<td>1:A:605:LEU:HD12</td>
<td>1:A:606:LYS:N</td>
<td>2.16</td>
<td>0.60</td>
</tr>
<tr>
<td>1:B:273:SER:HA</td>
<td>1:B:286:ILE:O</td>
<td>2.01</td>
<td>0.60</td>
</tr>
<tr>
<td>1:A:624:ASN:OD1</td>
<td>1:A:627:SER:HA</td>
<td>2.02</td>
<td>0.60</td>
</tr>
<tr>
<td>1:B:565:ARG:HD2</td>
<td>1:B:584:TYR:CE2</td>
<td>2.37</td>
<td>0.60</td>
</tr>
<tr>
<td>1:A:67:LEU:HA</td>
<td>1:A:145:HIS:HD2</td>
<td>1.66</td>
<td>0.60</td>
</tr>
<tr>
<td>1:B:311:GLU:HG2</td>
<td>1:B:317:TYR:HA</td>
<td>1.83</td>
<td>0.60</td>
</tr>
<tr>
<td>1:B:538:MET:O</td>
<td>1:B:542:THR:HG23</td>
<td>2.01</td>
<td>0.60</td>
</tr>
<tr>
<td>1:A:187:LEU:HG3</td>
<td>1:B:87:THR:HG22</td>
<td>1.84</td>
<td>0.60</td>
</tr>
<tr>
<td>1:A:352:ASP:OD2</td>
<td>1:A:355:THR:HB</td>
<td>2.02</td>
<td>0.60</td>
</tr>
<tr>
<td>1:B:626:ASP:HA</td>
<td>1:B:657:LYS:CB</td>
<td>2.32</td>
<td>0.60</td>
</tr>
<tr>
<td>1:B:323:LEU:HD12</td>
<td>1:B:324:ASP:N</td>
<td>2.17</td>
<td>0.59</td>
</tr>
<tr>
<td>1:B:384:GLU:HA</td>
<td>1:B:489:ASN:ND2</td>
<td>2.10</td>
<td>0.59</td>
</tr>
<tr>
<td>1:B:333:PRO:HG3</td>
<td>3:B:968:LYS:HE3</td>
<td>1.84</td>
<td>0.59</td>
</tr>
<tr>
<td>1:A:239:VAL:HG12</td>
<td>1:A:240:LYS:HE3</td>
<td>1.83</td>
<td>0.59</td>
</tr>
<tr>
<td>1:B:86:LEU:HD21</td>
<td>1:B:268:VAL:HG23</td>
<td>1.83</td>
<td>0.59</td>
</tr>
<tr>
<td>1:B:415:ASP:HB2</td>
<td>1:B:746:TRP:CZ2</td>
<td>2.37</td>
<td>0.59</td>
</tr>
<tr>
<td>1:A:323:LEU:HD12</td>
<td>1:A:324:ASP:H</td>
<td>1.66</td>
<td>0.59</td>
</tr>
<tr>
<td>1:B:934:VAL:O</td>
<td>1:B:938:ILE:HG13</td>
<td>2.03</td>
<td>0.59</td>
</tr>
<tr>
<td>1:A:729:TYR:HB3</td>
<td>1:A:730:PHE:CD2</td>
<td>2.38</td>
<td>0.59</td>
</tr>
<tr>
<td>1:B:906:SER:HB3</td>
<td>1:B:941:ASN:HB3</td>
<td>1.84</td>
<td>0.59</td>
</tr>
<tr>
<td>1:B:398:TYR:CZ</td>
<td>1:B:402:ILE:HD11</td>
<td>2.37</td>
<td>0.59</td>
</tr>
<tr>
<td>1:A:777:TRP:HB2</td>
<td>1:A:786:ILE:CD1</td>
<td>2.32</td>
<td>0.59</td>
</tr>
<tr>
<td>1:B:442:THR:HG23</td>
<td>1:B:445:GLN:HG3</td>
<td>1.83</td>
<td>0.59</td>
</tr>
<tr>
<td>1:A:740:SER:OG</td>
<td>1:A:742:LYS:HG2</td>
<td>2.02</td>
<td>0.59</td>
</tr>
<tr>
<td>1:A:797:VAL:O</td>
<td>1:A:800:GLN:HG2</td>
<td>2.03</td>
<td>0.58</td>
</tr>
<tr>
<td>1:B:594:THR:HG21</td>
<td>1:B:614:LEU:HD11</td>
<td>1.83</td>
<td>0.58</td>
</tr>
<tr>
<td>1:A:219:ASN:OD1</td>
<td>1:A:258:LYS:HD2</td>
<td>2.03</td>
<td>0.58</td>
</tr>
<tr>
<td>1:A:273:SER:HA</td>
<td>1:A:286:ILE:O</td>
<td>2.03</td>
<td>0.58</td>
</tr>
<tr>
<td>1:A:582:GLU:C</td>
<td>1:A:583:ARG:CG</td>
<td>2.71</td>
<td>0.58</td>
</tr>
<tr>
<td>1:A:415:ASP:HB2</td>
<td>1:A:746:TRP:CZ2</td>
<td>2.38</td>
<td>0.58</td>
</tr>
<tr>
<td>1:B:245:GLU:CG</td>
<td>1:B:246:GLY:H</td>
<td>2.06</td>
<td>0.58</td>
</tr>
</tbody>
</table>

Continued on next page...
<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:B:860:HIS:O</td>
<td>1:B:860:HIS:HD2</td>
<td>1.87</td>
<td>0.58</td>
</tr>
<tr>
<td>1:B:813:GLU:HG2</td>
<td>1:B:849:VAL:HG13</td>
<td>1.84</td>
<td>0.58</td>
</tr>
<tr>
<td>1:B:729:TYR:HB3</td>
<td>1:B:730:PHE:CD2</td>
<td>2.37</td>
<td>0.58</td>
</tr>
<tr>
<td>1:A:333:PRO:HA</td>
<td>6:A:1083:MES:O3S</td>
<td>2.04</td>
<td>0.58</td>
</tr>
<tr>
<td>1:B:436:ILE:HD11</td>
<td>1:B:457:LYS:HG2</td>
<td>1.84</td>
<td>0.58</td>
</tr>
<tr>
<td>1:B:540:THR:O</td>
<td>1:B:544:GLN:HG2</td>
<td>2.02</td>
<td>0.58</td>
</tr>
<tr>
<td>1:B:797:VAL:O</td>
<td>1:B:800:GLN:HG2</td>
<td>2.03</td>
<td>0.58</td>
</tr>
<tr>
<td>1:B:441:GLU:HB2</td>
<td>1:B:445:GLN:OE1</td>
<td>2.04</td>
<td>0.58</td>
</tr>
<tr>
<td>1:B:278:THR:CG2</td>
<td>1:B:282:VAL:HB</td>
<td>2.34</td>
<td>0.58</td>
</tr>
<tr>
<td>1:B:624:ASN:OD1</td>
<td>1:B:627:SER:HA</td>
<td>2.04</td>
<td>0.58</td>
</tr>
<tr>
<td>1:B:465:LEU:HD22</td>
<td>1:B:496:TRP:HZ3</td>
<td>1.69</td>
<td>0.57</td>
</tr>
<tr>
<td>1:A:333:PRO:HB3</td>
<td>3:A:968:LYS:HG2</td>
<td>1.85</td>
<td>0.57</td>
</tr>
<tr>
<td>1:B:433:SER:O</td>
<td>1:B:545:LYS:HD3</td>
<td>2.04</td>
<td>0.57</td>
</tr>
<tr>
<td>1:B:727:LEU:O</td>
<td>1:B:731:LYS:HD3</td>
<td>2.03</td>
<td>0.57</td>
</tr>
<tr>
<td>1:A:324:ASP:C</td>
<td>1:A:325:LEU:HD12</td>
<td>2.25</td>
<td>0.57</td>
</tr>
<tr>
<td>1:B:634:HIS:HE1</td>
<td>1:B:675:LEU:CD1</td>
<td>2.17</td>
<td>0.57</td>
</tr>
<tr>
<td>1:A:540:THR:O</td>
<td>1:A:544:GLN:HG2</td>
<td>2.05</td>
<td>0.57</td>
</tr>
<tr>
<td>1:B:398:TYR:OH</td>
<td>1:B:466:LYS:HD3</td>
<td>2.04</td>
<td>0.57</td>
</tr>
<tr>
<td>1:A:158:PRO:CB</td>
<td>1:A:159:HIS:HD2</td>
<td>2.17</td>
<td>0.57</td>
</tr>
<tr>
<td>1:A:911:LEU:CD1</td>
<td>1:A:939:THR:HG22</td>
<td>2.34</td>
<td>0.57</td>
</tr>
<tr>
<td>1:B:318:TYR:CE2</td>
<td>1:B:320:LEU:HB2</td>
<td>2.39</td>
<td>0.57</td>
</tr>
<tr>
<td>1:B:407:THR:HG1</td>
<td>1:B:408:TYR:HD2</td>
<td>1.50</td>
<td>0.57</td>
</tr>
<tr>
<td>1:A:123:GLN:NE2</td>
<td>1:A:133:PRO:HB3</td>
<td>2.19</td>
<td>0.57</td>
</tr>
<tr>
<td>1:B:62:PHE:CD1</td>
<td>1:B:142:TYR:HB2</td>
<td>2.40</td>
<td>0.57</td>
</tr>
<tr>
<td>1:A:812:TYR:CE1</td>
<td>1:A:821:GLN:HB3</td>
<td>2.39</td>
<td>0.57</td>
</tr>
<tr>
<td>1:B:547:ILE:HG12</td>
<td>1:B:548:PRO:HD2</td>
<td>1.86</td>
<td>0.57</td>
</tr>
<tr>
<td>1:B:67:LEU:HB3</td>
<td>1:B:145:HIS:CD2</td>
<td>2.40</td>
<td>0.57</td>
</tr>
<tr>
<td>1:B:219:ASN:OD1</td>
<td>1:B:258:LYS:HD2</td>
<td>2.05</td>
<td>0.56</td>
</tr>
<tr>
<td>1:B:700:LEU:HD21</td>
<td>1:B:730:PHE:CD1</td>
<td>2.40</td>
<td>0.56</td>
</tr>
<tr>
<td>1:A:398:TYR:OH</td>
<td>1:A:466:LYS:HD3</td>
<td>2.05</td>
<td>0.56</td>
</tr>
<tr>
<td>1:A:925:GLY:O</td>
<td>1:A:926:SER:C</td>
<td>2.44</td>
<td>0.56</td>
</tr>
<tr>
<td>1:A:64:TRP:CE2</td>
<td>1:A:70:PRO:HG3</td>
<td>2.40</td>
<td>0.56</td>
</tr>
<tr>
<td>1:A:158:PRO:HB3</td>
<td>1:A:159:HIS:HD2</td>
<td>1.71</td>
<td>0.56</td>
</tr>
<tr>
<td>1:A:727:LEU:HD22</td>
<td>1:A:761:LEU:HD23</td>
<td>1.87</td>
<td>0.56</td>
</tr>
<tr>
<td>1:A:730:PHE:HD2</td>
<td>1:A:730:PHE:N</td>
<td>2.03</td>
<td>0.56</td>
</tr>
<tr>
<td>1:B:352:ASP:OD2</td>
<td>1:B:355:THR:HB</td>
<td>2.05</td>
<td>0.56</td>
</tr>
<tr>
<td>1:B:763:HIS:CD2</td>
<td>1:B:765:PRO:HD2</td>
<td>2.40</td>
<td>0.56</td>
</tr>
<tr>
<td>1:B:152:VAL:HG12</td>
<td>1:B:154:GLU:H</td>
<td>1.70</td>
<td>0.56</td>
</tr>
</tbody>
</table>

Continued from previous page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:B:634:HIS:CE1</td>
<td>1:B:675:LEU:HD13</td>
<td>2.40</td>
<td>0.56</td>
</tr>
<tr>
<td>1:A:634:HIS:HE1</td>
<td>1:A:675:LEU:CD1</td>
<td>2.18</td>
<td>0.56</td>
</tr>
<tr>
<td>1:A:750:LEU:HD12</td>
<td>1:A:750:LEU:O</td>
<td>2.06</td>
<td>0.56</td>
</tr>
<tr>
<td>1:A:813:GLU:HG2</td>
<td>1:A:849:VAL:HG13</td>
<td>1.87</td>
<td>0.56</td>
</tr>
<tr>
<td>1:B:72:VAL:HG13</td>
<td>1:B:103:ASN:HB2</td>
<td>1.86</td>
<td>0.56</td>
</tr>
<tr>
<td>1:B:557:CY5:SG</td>
<td>1:B:617:LYS:HG2</td>
<td>2.45</td>
<td>0.56</td>
</tr>
<tr>
<td>1:A:245:GLU:CG</td>
<td>1:A:246:GLY:H</td>
<td>2.05</td>
<td>0.56</td>
</tr>
<tr>
<td>1:B:750:LEU:O</td>
<td>1:B:750:LEU:HD12</td>
<td>2.05</td>
<td>0.56</td>
</tr>
<tr>
<td>1:A:152:VAL:HG12</td>
<td>1:A:154:GLU:H</td>
<td>1.70</td>
<td>0.56</td>
</tr>
<tr>
<td>1:B:122:LEU:HB2</td>
<td>1:B:137:LEU:HD21</td>
<td>1.87</td>
<td>0.56</td>
</tr>
<tr>
<td>1:B:158:PRO:CB</td>
<td>1:B:159:HIS:HD2</td>
<td>2.19</td>
<td>0.56</td>
</tr>
<tr>
<td>1:B:80:LEU:HD22</td>
<td>1:B:81:PHE:N</td>
<td>2.21</td>
<td>0.56</td>
</tr>
<tr>
<td>1:A:906:SER:HB3</td>
<td>1:A:941:ASN:HB3</td>
<td>1.87</td>
<td>0.55</td>
</tr>
<tr>
<td>1:B:342:ILE:HD11</td>
<td>1:B:375:GLN:NE2</td>
<td>2.21</td>
<td>0.55</td>
</tr>
<tr>
<td>1:B:720:GLU:HA</td>
<td>1:B:720:GLU:OE2</td>
<td>2.06</td>
<td>0.55</td>
</tr>
<tr>
<td>1:B:696:LEU:HD23</td>
<td>1:B:750:LEU:HD21</td>
<td>1.88</td>
<td>0.55</td>
</tr>
<tr>
<td>1:B:740:SER:OG</td>
<td>1:B:742:LYS:HG2</td>
<td>2.06</td>
<td>0.55</td>
</tr>
<tr>
<td>1:B:796:SER:O</td>
<td>1:B:800:GLN:NE2</td>
<td>2.38</td>
<td>0.55</td>
</tr>
<tr>
<td>1:B:710:MET:O</td>
<td>1:B:713:ARG:O</td>
<td>2.25</td>
<td>0.55</td>
</tr>
<tr>
<td>1:B:731:LYS:HE3</td>
<td>1:B:763:HIS:HE1</td>
<td>1.70</td>
<td>0.55</td>
</tr>
<tr>
<td>1:A:214:PRO:HG3</td>
<td>1:A:386:TRP:CZ2</td>
<td>2.41</td>
<td>0.55</td>
</tr>
<tr>
<td>1:A:318:TYR:CE2</td>
<td>1:A:320:LEU:HB2</td>
<td>2.41</td>
<td>0.55</td>
</tr>
<tr>
<td>1:A:863:ALA:HB1</td>
<td>1:A:904:HIS:HE1</td>
<td>1.71</td>
<td>0.55</td>
</tr>
<tr>
<td>1:B:405:ASN:O</td>
<td>1:B:409:PRO:HG3</td>
<td>2.06</td>
<td>0.55</td>
</tr>
<tr>
<td>1:A:796:SER:O</td>
<td>1:A:800:GLN:NE2</td>
<td>2.39</td>
<td>0.55</td>
</tr>
<tr>
<td>1:A:919:GLU:O</td>
<td>1:A:922:GLU:HB2</td>
<td>2.06</td>
<td>0.55</td>
</tr>
<tr>
<td>1:A:934:VAL:CG1</td>
<td>1:A:935:LEU:N</td>
<td>2.70</td>
<td>0.55</td>
</tr>
<tr>
<td>1:B:830:THR:HB</td>
<td>1:B:865:ARG:HH21</td>
<td>1.71</td>
<td>0.55</td>
</tr>
<tr>
<td>1:B:314:PHE:O</td>
<td>1:B:479:ILE:HD12</td>
<td>2.07</td>
<td>0.55</td>
</tr>
<tr>
<td>1:A:626:ASP:OD1</td>
<td>1:A:655:ARG:HD3</td>
<td>2.07</td>
<td>0.55</td>
</tr>
<tr>
<td>1:A:860:HIS:O</td>
<td>1:A:860:HIS:HD2</td>
<td>1.90</td>
<td>0.54</td>
</tr>
<tr>
<td>1:A:877:ARG:HA</td>
<td>1:A:917:PHE:CE1</td>
<td>2.42</td>
<td>0.54</td>
</tr>
<tr>
<td>1:A:298:TYR:CZ</td>
<td>1:A:361:LYS:HD2</td>
<td>2.41</td>
<td>0.54</td>
</tr>
<tr>
<td>1:A:731:LYS:N</td>
<td>1:A:732:PRO:CD</td>
<td>2.70</td>
<td>0.54</td>
</tr>
<tr>
<td>1:B:588:ILE:HD11</td>
<td>1:B:631:TYR:CD1</td>
<td>2.41</td>
<td>0.54</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:A:720:GLU:O</td>
<td>1:A:720:GLU:O</td>
<td>2.08</td>
<td>0.54</td>
</tr>
<tr>
<td>1:B:387:ASN:CG</td>
<td>8:B:1013:HOH:O</td>
<td>2.45</td>
<td>0.54</td>
</tr>
<tr>
<td>1:B:697:LEU:HD11</td>
<td>1:B:750:LEU:HD13</td>
<td>1.90</td>
<td>0.54</td>
</tr>
<tr>
<td>1:A:855:LEU:HD22</td>
<td>1:A:859:LEU:HD22</td>
<td>1.90</td>
<td>0.54</td>
</tr>
<tr>
<td>1:B:386:TRP:N</td>
<td>8:B:1013:HOH:O</td>
<td>2.40</td>
<td>0.54</td>
</tr>
<tr>
<td>1:A:416:TYR:O</td>
<td>1:A:418:LEU:O</td>
<td>2.41</td>
<td>0.54</td>
</tr>
<tr>
<td>1:B:718:ILE:HD12</td>
<td>1:B:949:LEU:HD11</td>
<td>1.90</td>
<td>0.54</td>
</tr>
<tr>
<td>1:A:730:PHE:CD2</td>
<td>1:A:730:PHE:N</td>
<td>2.75</td>
<td>0.54</td>
</tr>
<tr>
<td>1:B:257:VAL:HG23</td>
<td>1:B:258:LYS:O</td>
<td>2.08</td>
<td>0.54</td>
</tr>
<tr>
<td>1:B:324:ASP:C</td>
<td>1:B:325:LEU:HD12</td>
<td>2.28</td>
<td>0.54</td>
</tr>
<tr>
<td>1:B:911:LEU:CD1</td>
<td>1:B:939:THR:HG22</td>
<td>2.37</td>
<td>0.54</td>
</tr>
<tr>
<td>1:A:316:ILE:HD11</td>
<td>1:A:483:LYS:HG3</td>
<td>1.90</td>
<td>0.53</td>
</tr>
<tr>
<td>1:A:441:GLU:HB3</td>
<td>1:A:445:GLN:OE1</td>
<td>2.07</td>
<td>0.53</td>
</tr>
<tr>
<td>1:B:80:LEU:HD22</td>
<td>1:B:81:PHE:O</td>
<td>1.74</td>
<td>0.53</td>
</tr>
<tr>
<td>1:B:870:GLN:HE22</td>
<td>1:B:910:LYS:NZ</td>
<td>2.05</td>
<td>0.53</td>
</tr>
<tr>
<td>1:B:626:ASP:OD1</td>
<td>1:B:655:ARG:HD3</td>
<td>2.07</td>
<td>0.53</td>
</tr>
<tr>
<td>1:B:790:VAL:O</td>
<td>1:B:794:VAL:HG23</td>
<td>2.08</td>
<td>0.53</td>
</tr>
<tr>
<td>1:B:805:TRP:CH2</td>
<td>1:B:839:LYS:HD3</td>
<td>2.43</td>
<td>0.53</td>
</tr>
<tr>
<td>1:B:547:ILE:HG12</td>
<td>1:B:548:PRO:CD</td>
<td>2.38</td>
<td>0.53</td>
</tr>
<tr>
<td>1:B:592:TYR:HA</td>
<td>1:B:622:LYS:O</td>
<td>2.09</td>
<td>0.53</td>
</tr>
<tr>
<td>1:A:547:ILE:HG12</td>
<td>1:A:548:PRO:HD2</td>
<td>1.90</td>
<td>0.53</td>
</tr>
<tr>
<td>1:A:278:THR:HG23</td>
<td>1:A:282:VAL:N</td>
<td>2.24</td>
<td>0.53</td>
</tr>
<tr>
<td>1:A:465:LEU:HD22</td>
<td>1:A:496:TRP:HZ3</td>
<td>1.74</td>
<td>0.53</td>
</tr>
<tr>
<td>1:B:863:ALA:HB1</td>
<td>1:B:904:HIS:HE1</td>
<td>1.74</td>
<td>0.53</td>
</tr>
<tr>
<td>1:A:549:LEU:HB2</td>
<td>1:A:566:PHE:HD2</td>
<td>1.74</td>
<td>0.53</td>
</tr>
<tr>
<td>1:A:615:PRO:O</td>
<td>1:A:616:GLU:CB</td>
<td>2.56</td>
<td>0.53</td>
</tr>
<tr>
<td>1:A:870:GLN:HE22</td>
<td>1:A:910:LYS:NZ</td>
<td>2.06</td>
<td>0.53</td>
</tr>
<tr>
<td>1:B:278:THR:HG21</td>
<td>1:B:282:VAL:HB</td>
<td>1.89</td>
<td>0.53</td>
</tr>
<tr>
<td>1:B:411:LEU:HA</td>
<td>1:B:745:VAL:HG21</td>
<td>1.91</td>
<td>0.53</td>
</tr>
<tr>
<td>1:A:696:LEU:HD23</td>
<td>1:A:750:LEU:HD21</td>
<td>1.91</td>
<td>0.52</td>
</tr>
</tbody>
</table>

Continued on next page...
### Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
1:B:158:PRO:HB3 | 1:B:159:HIS:HD2 | 1.73 | 0.52
1:A:190:GLU:HG2 | 1:B:192:ARG:HA | 1.91 | 0.52
1:B:416:TYR:HE2 | 1:B:419:ASN:HB2 | 1.75 | 0.52
1:A:700:LEU:HD21 | 1:A:730:PHE:HD1 | 1.73 | 0.52
1:B:90:ASP:CB | 1:B:171:LYS:HA | 2.37 | 0.52
1:B:457:LYS:HE3 | 1:B:630:TYR:CE2 | 2.44 | 0.52
1:B:64:TRP:CE2 | 1:B:70:PRO:HG3 | 2.44 | 0.52
1:A:537:MET:HE | 1:A:589:PRO:HG3 | 2.38 | 0.52
1:B:363:TRP:O | 1:B:367:VAL:HG12 | 2.09 | 0.52
1:A:90:ASP:CB | 1:A:171:LYS:HA | 2.39 | 0.52
1:A:62:PHE:CD1 | 1:A:142:TYR:HB2 | 2.45 | 0.52
1:B:731:LYS:N | 1:B:732:PRO:CD | 2.72 | 0.52
1:A:384:GLU:HG2 | 1:A:489:ASN:HB3 | 1.90 | 0.52
1:B:56:ALA:CB | 1:B:61:ARG:CA | 2.81 | 0.52
1:B:932:GLN:HA | 1:B:932:GLN:NE2 | 2.25 | 0.52
1:B:416:TYR:O | 1:B:418:LEU:N | 2.43 | 0.52
1:B:615:PRO:O | 1:B:616:GLU:CB | 2.57 | 0.52
1:B:313:TYR:CE2 | 1:B:478:ILE:HD11 | 2.43 | 0.52
1:B:62:PHE:CE1 | 1:B:142:TYR:HB2 | 2.44 | 0.52
1:B:833:HIS:HB2 | 1:B:836:LYS:HG3 | 1.92 | 0.52
1:B:622:LYS:HZ3 | 1:B:658:ASP:HB3 | 1.75 | 0.52
1:A:63:PRO:HB3 | 1:A:107:PHE:CE2 | 2.45 | 0.51
1:A:119:ASN:ND2 | 8:A:1000:HOH:O | 2.43 | 0.51
1:A:397:LYS:HB3 | 1:A:459:ALA:HB2 | 1.91 | 0.51
1:B:928:LEU:HB2 | 1:B:930:ILE:HG22 | 1.92 | 0.51
1:A:592:TYR:HA | 1:A:622:LYS:O | 2.10 | 0.51
1:B:159:HIS:O | 1:B:160:LEU:HD22 | 2.10 | 0.51
1:B:258:LYS:HG2 | 5:B:1081:NAG:C6 | 2.38 | 0.51
1:B:432:SER:HB3 | 1:B:936:GLU:OE2 | 2.10 | 0.51
1:A:436:ILE:HD11 | 1:A:457:LYS:HG2 | 1.92 | 0.51
1:A:227:GLU:HG3 | 4:A:1071:NAG:C8 | 2.40 | 0.51
1:B:227:GLU:OE1 | 1:B:229:ARG:HD3 | 2.11 | 0.51
1:B:298:TYR:CZ | 1:B:361:LYS:HD2 | 2.46 | 0.51
1:B:611:THR:HG22 | 1:B:612:LEU:N | 2.25 | 0.51
1:B:902:THR:OG1 | 1:B:934:VAL:HG21 | 2.10 | 0.51
1:A:99:VAL:HG12 | 1:A:100:LEU:H | 1.75 | 0.51
1:A:405:ASN:O | 1:A:409:PRO:HG3 | 2.11 | 0.51
1:B:309:PHE:CD2 | 1:B:309:PHE:CD2 | 2.83 | 0.51
1:B:468:PHE:CD2 | 1:B:469:LEU:HG | 2.46 | 0.51
<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:A:132:LYS:HB3</td>
<td>1:A:133:PRO:HD2</td>
<td>1.91</td>
<td>0.51</td>
</tr>
<tr>
<td>1:B:397:LYS:HB3</td>
<td>1:B:459:ALA:HB2</td>
<td>1.92</td>
<td>0.51</td>
</tr>
<tr>
<td>1:B:622:LYS:HZ1</td>
<td>1:B:662:LEU:HG</td>
<td>1.76</td>
<td>0.51</td>
</tr>
<tr>
<td>1:A:327:ALA:HB1</td>
<td>1:A:346:GLU:HG2</td>
<td>1.93</td>
<td>0.51</td>
</tr>
<tr>
<td>1:B:63:PRO:HB3</td>
<td>1:B:107:PHE:CE2</td>
<td>2.46</td>
<td>0.51</td>
</tr>
<tr>
<td>1:B:327:ALA:HB1</td>
<td>1:B:346:GLU:HG2</td>
<td>1.93</td>
<td>0.51</td>
</tr>
<tr>
<td>1:A:468:PHE:CD2</td>
<td>1:A:469:LEU:HG</td>
<td>2.45</td>
<td>0.51</td>
</tr>
<tr>
<td>1:B:549:LEU:HB2</td>
<td>1:B:566:PHE:HD2</td>
<td>1.74</td>
<td>0.51</td>
</tr>
<tr>
<td>1:B:99:VAL:HG12</td>
<td>1:B:100:LEU:H</td>
<td>1.76</td>
<td>0.51</td>
</tr>
<tr>
<td>1:B:442:THR:HG23</td>
<td>1:B:445:GLN:H</td>
<td>1.75</td>
<td>0.51</td>
</tr>
<tr>
<td>1:A:417:PHE:O</td>
<td>1:A:420:VAL:HB</td>
<td>2.11</td>
<td>0.50</td>
</tr>
<tr>
<td>1:B:156:LEU:HD12</td>
<td>1:B:162:TYR:CE1</td>
<td>2.46</td>
<td>0.50</td>
</tr>
<tr>
<td>1:B:355:THR:HG21</td>
<td>1:B:817:SER:OG</td>
<td>2.11</td>
<td>0.50</td>
</tr>
<tr>
<td>1:B:417:PHE:O</td>
<td>1:B:420:VAL:HB</td>
<td>2.11</td>
<td>0.50</td>
</tr>
<tr>
<td>1:B:655:ARG:HB2</td>
<td>1:B:658:ASP:HB2</td>
<td>1.92</td>
<td>0.50</td>
</tr>
<tr>
<td>1:B:932:GLN:HE21</td>
<td>1:B:932:GLN:HA</td>
<td>1.77</td>
<td>0.50</td>
</tr>
<tr>
<td>1:A:466:LYS:HG3</td>
<td>1:A:466:LYS:O</td>
<td>2.11</td>
<td>0.50</td>
</tr>
<tr>
<td>1:A:905:PHE:O</td>
<td>1:A:938:ILE:HG23</td>
<td>2.11</td>
<td>0.50</td>
</tr>
<tr>
<td>1:B:55:VAL:O</td>
<td>1:B:56:ALA:HB2</td>
<td>2.10</td>
<td>0.50</td>
</tr>
<tr>
<td>1:A:309:PHE:CD2</td>
<td>1:A:309:PHE:C</td>
<td>2.84</td>
<td>0.50</td>
</tr>
<tr>
<td>1:A:432:SER:HB3</td>
<td>1:A:936:GLU:OE2</td>
<td>2.12</td>
<td>0.50</td>
</tr>
<tr>
<td>1:A:710:MET:O</td>
<td>1:A:713:ARG:O</td>
<td>2.28</td>
<td>0.50</td>
</tr>
<tr>
<td>1:B:372:LEU:N</td>
<td>1:B:372:LEU:HD23</td>
<td>2.26</td>
<td>0.50</td>
</tr>
<tr>
<td>1:A:313:TYR:CE2</td>
<td>1:A:478:ILE:HD11</td>
<td>2.45</td>
<td>0.50</td>
</tr>
<tr>
<td>1:B:602:ARG:O</td>
<td>1:B:603:HIS:HB2</td>
<td>2.11</td>
<td>0.50</td>
</tr>
<tr>
<td>1:B:921:LEU:O</td>
<td>1:B:922:GLU:HB2</td>
<td>2.12</td>
<td>0.50</td>
</tr>
<tr>
<td>1:B:258:LYS:CG</td>
<td>5:B:1081:NAG:H62</td>
<td>2.38</td>
<td>0.50</td>
</tr>
<tr>
<td>1:B:727:LEU:HD22</td>
<td>1:B:761:LEU:HD23</td>
<td>1.93</td>
<td>0.50</td>
</tr>
<tr>
<td>1:A:191:THR:H</td>
<td>1:B:191:THR:HB</td>
<td>1.77</td>
<td>0.50</td>
</tr>
<tr>
<td>1:B:475:GLN:O</td>
<td>1:B:479:ILE:HG12</td>
<td>2.12</td>
<td>0.50</td>
</tr>
<tr>
<td>1:B:59:GLY:C</td>
<td>1:B:60:GLU:HG2</td>
<td>2.32</td>
<td>0.50</td>
</tr>
<tr>
<td>1:B:730:PHE:C</td>
<td>1:B:732:PRO:HD2</td>
<td>2.32</td>
<td>0.50</td>
</tr>
<tr>
<td>1:B:6866:PRO:O</td>
<td>1:B:869:GLN:HG2</td>
<td>2.11</td>
<td>0.50</td>
</tr>
<tr>
<td>1:B:446:ILE:O</td>
<td>1:B:449:MET:HB2</td>
<td>2.12</td>
<td>0.50</td>
</tr>
<tr>
<td>1:B:721:ASN:HB3</td>
<td>1:B:956:LEU:HD13</td>
<td>1.93</td>
<td>0.50</td>
</tr>
<tr>
<td>1:B:121:THR:HA</td>
<td>1:B:137:LEU:HD23</td>
<td>1.94</td>
<td>0.50</td>
</tr>
<tr>
<td>1:B:432:SER:HB3</td>
<td>1:B:936:GLU:CD</td>
<td>2.33</td>
<td>0.50</td>
</tr>
<tr>
<td>1:B:905:PHE:O</td>
<td>1:B:938:ILE:HG23</td>
<td>2.11</td>
<td>0.50</td>
</tr>
<tr>
<td>1:B:877:ARG:HA</td>
<td>1:B:917:PHE:CE1</td>
<td>2.46</td>
<td>0.50</td>
</tr>
</tbody>
</table>
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:A:342:ILE:HD11</td>
<td>1:A:375:GLN:NE2</td>
<td>2.27</td>
<td>0.49</td>
</tr>
<tr>
<td>1:A:721:ASN:HB3</td>
<td>1:A:956:LEU:HD13</td>
<td>1.93</td>
<td>0.49</td>
</tr>
<tr>
<td>1:B:925:GLY:O</td>
<td>1:B:926:SER:C</td>
<td>2.50</td>
<td>0.49</td>
</tr>
<tr>
<td>1:A:536:GLU:O</td>
<td>1:A:540:THR:HG22</td>
<td>2.12</td>
<td>0.49</td>
</tr>
<tr>
<td>1:A:638:HIS:HB2</td>
<td>1:A:642:GLN:HE21</td>
<td>1.76</td>
<td>0.49</td>
</tr>
<tr>
<td>1:B:541:TRP:CH2</td>
<td>1:B:548:PRO:HG2</td>
<td>2.47</td>
<td>0.49</td>
</tr>
<tr>
<td>1:A:416:TYR:HE2</td>
<td>1:A:419:ASN:HB2</td>
<td>1.75</td>
<td>0.49</td>
</tr>
<tr>
<td>1:B:452:GLU:N</td>
<td>6:B:1084:MES:H61</td>
<td>2.27</td>
<td>0.49</td>
</tr>
<tr>
<td>1:B:386:TRP:HB3</td>
<td>1:B:446:ILE:HG23</td>
<td>1.95</td>
<td>0.49</td>
</tr>
<tr>
<td>1:B:700:LEU:HD21</td>
<td>1:B:730:PHE:HD1</td>
<td>1.77</td>
<td>0.49</td>
</tr>
<tr>
<td>1:B:769:LYS:HD2</td>
<td>1:B:773:LEU:CD1</td>
<td>2.42</td>
<td>0.49</td>
</tr>
<tr>
<td>1:A:475:GLN:O</td>
<td>1:A:479:ILE:HG12</td>
<td>2.13</td>
<td>0.49</td>
</tr>
<tr>
<td>1:A:602:ARG:O</td>
<td>1:A:603:HIS:HB2</td>
<td>2.11</td>
<td>0.49</td>
</tr>
<tr>
<td>1:A:620:TRP:CE3</td>
<td>1:A:620:TRP:O</td>
<td>2.66</td>
<td>0.49</td>
</tr>
<tr>
<td>1:B:466:LYS:HG3</td>
<td>1:B:466:LYS:O</td>
<td>2.12</td>
<td>0.49</td>
</tr>
<tr>
<td>1:B:838:LEU:O</td>
<td>1:B:842:GLU:HG2</td>
<td>2.12</td>
<td>0.49</td>
</tr>
<tr>
<td>1:A:384:GLU:HA</td>
<td>1:A:489:ASN:ND2</td>
<td>2.22</td>
<td>0.49</td>
</tr>
<tr>
<td>1:A:410:GLU:OE2</td>
<td>1:A:410:GLU:N</td>
<td>2.43</td>
<td>0.49</td>
</tr>
<tr>
<td>1:B:69:LEU:HD23</td>
<td>1:B:147:GLN:HE21</td>
<td>1.78</td>
<td>0.49</td>
</tr>
<tr>
<td>1:B:236:MET:HB3</td>
<td>1:B:254:GLU:HB3</td>
<td>1.95</td>
<td>0.49</td>
</tr>
<tr>
<td>1:A:432:SER:HB3</td>
<td>1:A:936:GLU:CD</td>
<td>2.33</td>
<td>0.49</td>
</tr>
<tr>
<td>1:A:56:ALA:CB</td>
<td>1:A:57:THR:CA</td>
<td>2.87</td>
<td>0.49</td>
</tr>
<tr>
<td>1:B:718:ILE:CG2</td>
<td>1:B:952:LEU:HD22</td>
<td>2.42</td>
<td>0.49</td>
</tr>
<tr>
<td>1:B:918:PHE:CE2</td>
<td>1:B:934:VAL:CG1</td>
<td>2.95</td>
<td>0.49</td>
</tr>
<tr>
<td>1:B:388:ASP:OD2</td>
<td>1:B:492:ASN:HB2</td>
<td>2.13</td>
<td>0.49</td>
</tr>
<tr>
<td>1:A:93:ALA:HB3</td>
<td>1:A:168:PHE:CE2</td>
<td>2.47</td>
<td>0.49</td>
</tr>
<tr>
<td>1:A:67:LEU:HA</td>
<td>1:A:145:HIS:CD2</td>
<td>2.48</td>
<td>0.49</td>
</tr>
<tr>
<td>1:B:465:LEU:HD23</td>
<td>1:B:474:PHE:HE1</td>
<td>1.78</td>
<td>0.49</td>
</tr>
<tr>
<td>1:B:614:LEU:HG</td>
<td>1:B:616:GLU:O</td>
<td>2.12</td>
<td>0.49</td>
</tr>
<tr>
<td>1:B:640:TRP:CZ3</td>
<td>1:B:666:VAL:HG2</td>
<td>2.48</td>
<td>0.49</td>
</tr>
<tr>
<td>1:B:872:ALA:HB1</td>
<td>1:B:901:THR:HG2</td>
<td>1.95</td>
<td>0.49</td>
</tr>
<tr>
<td>1:B:378:GLY:CZ2</td>
<td>1:B:392:ASN:OD1</td>
<td>2.12</td>
<td>0.49</td>
</tr>
<tr>
<td>1:B:934:VAL:CG1</td>
<td>1:B:935:LEU:N</td>
<td>2.75</td>
<td>0.49</td>
</tr>
<tr>
<td>1:A:465:LEU:HD23</td>
<td>1:A:474:PHE:HE1</td>
<td>1.78</td>
<td>0.48</td>
</tr>
<tr>
<td>1:A:468:PHE:CE2</td>
<td>1:A:469:LEU:HG</td>
<td>2.49</td>
<td>0.48</td>
</tr>
<tr>
<td>1:A:693:SER:O</td>
<td>1:A:697:LEU:HB2</td>
<td>2.13</td>
<td>0.48</td>
</tr>
<tr>
<td>1:A:866:PRO:O</td>
<td>1:A:869:GLU:HG2</td>
<td>2.13</td>
<td>0.48</td>
</tr>
<tr>
<td>1:A:911:LEU:HD23</td>
<td>1:A:911:LEU:C</td>
<td>2.34</td>
<td>0.48</td>
</tr>
<tr>
<td>1:B:60:GLU:HB2</td>
<td>1:B:61:ARG:CA</td>
<td>2.44</td>
<td>0.48</td>
</tr>
</tbody>
</table>

Continued on next page...
<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:B:647:LEU:HD13</td>
<td>1:B:686:TYR:CE2</td>
<td>2.47</td>
<td>0.48</td>
</tr>
<tr>
<td>1:B:681:LEU:HB3</td>
<td>1:B:955:TRP:NE1</td>
<td>2.28</td>
<td>0.48</td>
</tr>
<tr>
<td>1:A:626:ASP:HA</td>
<td>1:A:657:LYS:CB</td>
<td>2.36</td>
<td>0.48</td>
</tr>
<tr>
<td>1:A:442:THR:HG23</td>
<td>1:A:445:GLN:H</td>
<td>1.79</td>
<td>0.48</td>
</tr>
<tr>
<td>1:B:541:TRP:HH2</td>
<td>1:B:548:PRO:HG2</td>
<td>1.78</td>
<td>0.48</td>
</tr>
<tr>
<td>1:A:62:PHE:CE1</td>
<td>1:A:142:TYR:HB2</td>
<td>2.49</td>
<td>0.48</td>
</tr>
<tr>
<td>1:A:366:B:ARG:NH1</td>
<td>1:A:400:GLU:OE2</td>
<td>2.46</td>
<td>0.48</td>
</tr>
<tr>
<td>1:A:733:VAL:HG13</td>
<td>1:A:734:ILE:N</td>
<td>2.28</td>
<td>0.48</td>
</tr>
<tr>
<td>1:B:620:TRP:CE3</td>
<td>1:B:620:TRP:O</td>
<td>2.67</td>
<td>0.48</td>
</tr>
<tr>
<td>1:A:363:TRP:O</td>
<td>1:A:367:VAL:HG12</td>
<td>2.13</td>
<td>0.48</td>
</tr>
<tr>
<td>1:A:541:TRP:CH2</td>
<td>1:A:548:PRO:HG2</td>
<td>2.48</td>
<td>0.48</td>
</tr>
<tr>
<td>1:A:197:THR:HG23</td>
<td>1:A:266:TYR:O</td>
<td>2.14</td>
<td>0.48</td>
</tr>
<tr>
<td>1:A:382:THR:O</td>
<td>1:A:489:ASN:HA</td>
<td>2.12</td>
<td>0.48</td>
</tr>
<tr>
<td>1:A:769:LYS:HD2</td>
<td>1:A:773:LEU:CD1</td>
<td>2.44</td>
<td>0.48</td>
</tr>
<tr>
<td>1:A:833:HIS:HB2</td>
<td>1:A:836:LYS:HG3</td>
<td>1.94</td>
<td>0.48</td>
</tr>
<tr>
<td>1:B:547:ILE:HD11</td>
<td>1:B:631:TYR:HA</td>
<td>1.96</td>
<td>0.48</td>
</tr>
<tr>
<td>1:B:67:LEU:CA</td>
<td>1:B:145:HIS:HD2</td>
<td>2.27</td>
<td>0.48</td>
</tr>
<tr>
<td>1:B:826:TYR:O</td>
<td>1:B:829:SER:HB2</td>
<td>2.14</td>
<td>0.48</td>
</tr>
<tr>
<td>1:A:701:SER:OG</td>
<td>1:A:702:TYR:N</td>
<td>2.46</td>
<td>0.48</td>
</tr>
<tr>
<td>1:B:468:PHE:CE2</td>
<td>1:B:469:LEU:HG</td>
<td>2.48</td>
<td>0.48</td>
</tr>
<tr>
<td>1:B:488:ARG:OG</td>
<td>1:B:489:ASN:H</td>
<td>2.26</td>
<td>0.48</td>
</tr>
<tr>
<td>1:B:664:HIS:CD2</td>
<td>1:B:668:GLN:HG3</td>
<td>2.49</td>
<td>0.48</td>
</tr>
<tr>
<td>1:A:547:ILE:HG12</td>
<td>1:A:548:PRO:CD</td>
<td>2.43</td>
<td>0.48</td>
</tr>
<tr>
<td>1:A:738:SER:O</td>
<td>1:A:751:ARG:CD</td>
<td>2.61</td>
<td>0.48</td>
</tr>
<tr>
<td>1:B:314:PHE:C</td>
<td>1:B:479:ILE:HD12</td>
<td>2.34</td>
<td>0.48</td>
</tr>
<tr>
<td>1:B:748:ARG:HB3</td>
<td>1:B:789:ASP:OD2</td>
<td>2.12</td>
<td>0.48</td>
</tr>
<tr>
<td>1:B:855:LEU:HD22</td>
<td>1:B:859:LEU:HD22</td>
<td>1.95</td>
<td>0.48</td>
</tr>
<tr>
<td>1:A:697:LEU:HD12</td>
<td>1:A:697:LEU:HA</td>
<td>1.64</td>
<td>0.48</td>
</tr>
<tr>
<td>1:B:72:VAL:CG1</td>
<td>1:B:103:ASN:HB2</td>
<td>2.43</td>
<td>0.48</td>
</tr>
<tr>
<td>1:B:880:TRP:HZ2</td>
<td>1:B:889:LEU:HD23</td>
<td>1.79</td>
<td>0.48</td>
</tr>
<tr>
<td>1:B:924:GLN:O</td>
<td>1:B:925:GLY:C</td>
<td>2.51</td>
<td>0.48</td>
</tr>
<tr>
<td>1:A:72:VAL:CG1</td>
<td>1:A:103:ASN:HB2</td>
<td>2.44</td>
<td>0.47</td>
</tr>
<tr>
<td>1:B:828:LEU:HB3</td>
<td>1:B:840:LEU:HD11</td>
<td>1.95</td>
<td>0.47</td>
</tr>
<tr>
<td>1:B:918:PHE:CZ</td>
<td>1:B:934:VAL:HG11</td>
<td>2.49</td>
<td>0.47</td>
</tr>
<tr>
<td>1:B:915:LYS:HA</td>
<td>1:B:935:LEU:HD21</td>
<td>1.95</td>
<td>0.47</td>
</tr>
<tr>
<td>1:A:659:ARG:NH2</td>
<td>8:A:990:HOH:O</td>
<td>2.45</td>
<td>0.47</td>
</tr>
<tr>
<td>1:B:79:ASP:HB2</td>
<td>1:B:96:LYS:HB3</td>
<td>1.96</td>
<td>0.47</td>
</tr>
<tr>
<td>1:B:200:GLU:HA</td>
<td>1:B:201:PRO:HA</td>
<td>1.63</td>
<td>0.47</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:A:386:TRP:HB3</td>
<td>1:A:446:ILE:HG23</td>
<td>1.96</td>
<td>0.47</td>
</tr>
<tr>
<td>1:A:664:HIS:CD2</td>
<td>1:A:668:GLN:HG3</td>
<td>2.50</td>
<td>0.47</td>
</tr>
<tr>
<td>1:B:80:LEU:HD12</td>
<td>1:B:222:ILE:CD1</td>
<td>2.44</td>
<td>0.47</td>
</tr>
<tr>
<td>1:B:640:TRP:CD1</td>
<td>1:B:675:LEU:HD21</td>
<td>2.49</td>
<td>0.47</td>
</tr>
<tr>
<td>1:B:945:LEU:HD23</td>
<td>1:B:945:LEU:HA</td>
<td>1.71</td>
<td>0.47</td>
</tr>
<tr>
<td>1:A:121:THR:HA</td>
<td>1:A:137:LEU:HD23</td>
<td>1.95</td>
<td>0.47</td>
</tr>
<tr>
<td>1:A:446:ILE:O</td>
<td>1:A:449:MET:HB2</td>
<td>2.13</td>
<td>0.47</td>
</tr>
<tr>
<td>1:A:541:TRP:HH2</td>
<td>1:A:548:PRO:HG2</td>
<td>1.78</td>
<td>0.47</td>
</tr>
<tr>
<td>1:B:67:LEU:CA</td>
<td>1:B:145:HIS:CD2</td>
<td>2.98</td>
<td>0.47</td>
</tr>
<tr>
<td>1:A:730:PHE:C</td>
<td>1:A:732:PRO:HD2</td>
<td>2.35</td>
<td>0.47</td>
</tr>
<tr>
<td>1:B:183:THR:HG22</td>
<td>1:B:193:ILE:HG12</td>
<td>1.97</td>
<td>0.47</td>
</tr>
<tr>
<td>1:B:457:LYS:HE3</td>
<td>1:B:630:TYR:HE2</td>
<td>1.79</td>
<td>0.47</td>
</tr>
<tr>
<td>1:B:140:LEU:CD1</td>
<td>1:B:151:LEU:HD11</td>
<td>2.45</td>
<td>0.47</td>
</tr>
<tr>
<td>1:B:659:ARG:HD2</td>
<td>1:B:690:GLU:OE1</td>
<td>2.15</td>
<td>0.47</td>
</tr>
<tr>
<td>1:B:911:LEU:HD23</td>
<td>1:B:911:LEU:C</td>
<td>2.34</td>
<td>0.47</td>
</tr>
<tr>
<td>1:A:236:MET:HB3</td>
<td>1:A:254:GLU:HB3</td>
<td>1.97</td>
<td>0.47</td>
</tr>
<tr>
<td>1:A:388:ASP:OD2</td>
<td>1:A:492:ASN:HB2</td>
<td>2.15</td>
<td>0.47</td>
</tr>
<tr>
<td>1:A:457:LYS:HE3</td>
<td>1:A:630:TYR:CE2</td>
<td>2.50</td>
<td>0.47</td>
</tr>
<tr>
<td>1:A:748:ARG:HB3</td>
<td>1:A:789:ASP:OD2</td>
<td>2.15</td>
<td>0.47</td>
</tr>
<tr>
<td>1:B:275:SER:HB3</td>
<td>1:B:283:LYS:HE2</td>
<td>1.97</td>
<td>0.47</td>
</tr>
<tr>
<td>1:B:697:LEU:HD12</td>
<td>1:B:697:LEU:HA</td>
<td>1.64</td>
<td>0.47</td>
</tr>
<tr>
<td>1:B:738:SER:O</td>
<td>1:B:751:ARG:CD</td>
<td>2.63</td>
<td>0.47</td>
</tr>
<tr>
<td>1:B:880:TRP:CD2</td>
<td>1:B:889:LEU:HD23</td>
<td>2.50</td>
<td>0.47</td>
</tr>
<tr>
<td>1:A:488:ARG:HG2</td>
<td>1:A:489:ASN:N</td>
<td>2.29</td>
<td>0.47</td>
</tr>
<tr>
<td>1:A:614:LEU:HG</td>
<td>1:A:616:GLU:O</td>
<td>2.15</td>
<td>0.47</td>
</tr>
<tr>
<td>1:A:651:HIS:CD2</td>
<td>1:A:652:THR:N</td>
<td>2.82</td>
<td>0.47</td>
</tr>
<tr>
<td>1:B:183:THR:HG22</td>
<td>1:B:193:ILE:CG1</td>
<td>2.44</td>
<td>0.47</td>
</tr>
<tr>
<td>1:B:565:ARG:HD3</td>
<td>1:B:567:LEU:HD11</td>
<td>1.96</td>
<td>0.47</td>
</tr>
<tr>
<td>1:A:74:ILE:HA</td>
<td>1:A:75:PRO:HD3</td>
<td>1.72</td>
<td>0.47</td>
</tr>
<tr>
<td>1:A:79:ASP:HB2</td>
<td>1:A:96:LYS:HB3</td>
<td>1.97</td>
<td>0.47</td>
</tr>
<tr>
<td>3:B:968:LYS:HB3</td>
<td>6:B:1084:MES:O1S</td>
<td>2.15</td>
<td>0.47</td>
</tr>
<tr>
<td>1:A:90:ASP:HB2</td>
<td>1:A:170:ALA:O</td>
<td>2.15</td>
<td>0.47</td>
</tr>
<tr>
<td>1:A:533:GLU:HG3</td>
<td>1:A:536:GLU:OE2</td>
<td>2.14</td>
<td>0.46</td>
</tr>
<tr>
<td>1:A:770:ALA:CB</td>
<td>1:A:797:VAL:HG21</td>
<td>2.45</td>
<td>0.46</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:B:223:LYS:HD3</td>
<td>1:B:252:HIS:CE1</td>
<td>2.50</td>
<td>0.46</td>
</tr>
<tr>
<td>1:B:774:PHE:HB2</td>
<td>1:B:794:VAL:HG12</td>
<td>1.97</td>
<td>0.46</td>
</tr>
<tr>
<td>1:B:770:ALA:CB</td>
<td>1:B:797:VAL:HG21</td>
<td>2.45</td>
<td>0.46</td>
</tr>
<tr>
<td>1:A:544:GLN:NE2</td>
<td>1:A:584:TYR:CD1</td>
<td>2.76</td>
<td>0.46</td>
</tr>
<tr>
<td>1:A:662:LEU:HB3</td>
<td>1:A:683:MET:HE1</td>
<td>1.97</td>
<td>0.46</td>
</tr>
<tr>
<td>1:A:932:GLN:NE2</td>
<td>1:A:932:GLN:HA</td>
<td>2.30</td>
<td>0.46</td>
</tr>
<tr>
<td>1:B:278:THR:HG23</td>
<td>1:B:282:VAL:N</td>
<td>2.29</td>
<td>0.46</td>
</tr>
<tr>
<td>1:B:86:LEU:HD21</td>
<td>1:B:268:VAL:CG2</td>
<td>2.44</td>
<td>0.46</td>
</tr>
<tr>
<td>1:B:894:ILE:HD13</td>
<td>1:B:894:ILE:HA</td>
<td>1.75</td>
<td>0.46</td>
</tr>
<tr>
<td>1:A:55:VAL:CB</td>
<td>1:A:62:PHE:HB2</td>
<td>2.46</td>
<td>0.46</td>
</tr>
<tr>
<td>1:A:659:ARG:HD2</td>
<td>1:A:690:GLU:OE1</td>
<td>2.16</td>
<td>0.46</td>
</tr>
<tr>
<td>1:B:104:ALA:CB</td>
<td>1:B:158:PRO:HD3</td>
<td>2.44</td>
<td>0.46</td>
</tr>
<tr>
<td>1:B:235:ASN:ND2</td>
<td>1:B:263:LEU:O</td>
<td>2.47</td>
<td>0.46</td>
</tr>
<tr>
<td>1:B:536:GLU:O</td>
<td>1:B:540:THR:HG22</td>
<td>2.14</td>
<td>0.46</td>
</tr>
<tr>
<td>1:A:314:PHE:O</td>
<td>1:A:316:ILE:HG13</td>
<td>2.16</td>
<td>0.46</td>
</tr>
<tr>
<td>1:A:640:TRP:CD3</td>
<td>1:A:666:VAL:HG22</td>
<td>2.51</td>
<td>0.46</td>
</tr>
<tr>
<td>1:A:902:THR:OG1</td>
<td>1:A:934:VAL:HG21</td>
<td>2.16</td>
<td>0.46</td>
</tr>
<tr>
<td>1:B:93:ALA:HB3</td>
<td>1:B:168:PHE:CE2</td>
<td>2.51</td>
<td>0.46</td>
</tr>
<tr>
<td>1:B:442:THR:HG21</td>
<td>8:B:984:HOH:O</td>
<td>2.14</td>
<td>0.46</td>
</tr>
<tr>
<td>1:A:680:ALA:O</td>
<td>1:A:684:THR:HG23</td>
<td>2.15</td>
<td>0.46</td>
</tr>
<tr>
<td>1:A:826:TYR:O</td>
<td>1:A:829:SER:HB2</td>
<td>2.15</td>
<td>0.46</td>
</tr>
<tr>
<td>1:A:681:LEU:HB3</td>
<td>1:A:955:TRP:NE1</td>
<td>2.31</td>
<td>0.46</td>
</tr>
<tr>
<td>1:B:544:GLN:NE2</td>
<td>1:B:584:TYR:CD1</td>
<td>2.76</td>
<td>0.46</td>
</tr>
<tr>
<td>1:B:724:ARG:O</td>
<td>1:B:728:GLN:HB2</td>
<td>2.15</td>
<td>0.46</td>
</tr>
<tr>
<td>1:A:192:ARG:HA</td>
<td>1:B:190:GLU:HG2</td>
<td>1.97</td>
<td>0.46</td>
</tr>
<tr>
<td>1:A:528:LEU:CB</td>
<td>1:A:529:GLY:HA2</td>
<td>2.37</td>
<td>0.46</td>
</tr>
<tr>
<td>1:A:537:MET:O</td>
<td>1:A:540:THR:CG2</td>
<td>2.61</td>
<td>0.46</td>
</tr>
<tr>
<td>6:B:1084:MES:H32</td>
<td>6:B:1084:MES:H81</td>
<td>1.44</td>
<td>0.46</td>
</tr>
<tr>
<td>1:B:148:ILE:HG13</td>
<td>1:B:148:ILE:O</td>
<td>2.15</td>
<td>0.46</td>
</tr>
<tr>
<td>1:B:537:MET:O</td>
<td>1:B:540:THR:CG2</td>
<td>2.62</td>
<td>0.46</td>
</tr>
<tr>
<td>1:B:553:LYS:O</td>
<td>1:B:559:LEU:HA</td>
<td>2.16</td>
<td>0.46</td>
</tr>
<tr>
<td>1:B:67:LEU:HA</td>
<td>1:B:145:HIS:CD2</td>
<td>2.46</td>
<td>0.46</td>
</tr>
<tr>
<td>1:B:680:ALA:O</td>
<td>1:B:684:THR:HG23</td>
<td>2.14</td>
<td>0.46</td>
</tr>
<tr>
<td>1:B:838:LEU:CD2</td>
<td>1:B:871:LEU:HD21</td>
<td>2.44</td>
<td>0.46</td>
</tr>
<tr>
<td>1:A:889:LEU:HD13</td>
<td>1:A:928:LEU:HD21</td>
<td>1.98</td>
<td>0.46</td>
</tr>
<tr>
<td>1:B:559:LEU:HD12</td>
<td>1:B:612:LEU:O</td>
<td>2.15</td>
<td>0.46</td>
</tr>
<tr>
<td>1:B:911:LEU:HD11</td>
<td>1:B:939:THR:HG22</td>
<td>1.97</td>
<td>0.46</td>
</tr>
<tr>
<td>1:A:915:LYS:HA</td>
<td>1:A:935:LEU:HD21</td>
<td>1.98</td>
<td>0.46</td>
</tr>
<tr>
<td>1:B:488:ARG:HG2</td>
<td>1:B:489:ASN:N</td>
<td>2.29</td>
<td>0.46</td>
</tr>
</tbody>
</table>

Continued on next page...
<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:B:784:LEU:CD1</td>
<td>1:B:786:ILE:HD12</td>
<td>2.46</td>
<td>0.46</td>
</tr>
<tr>
<td>1:A:880:TRP:HZ2</td>
<td>1:A:889:LEU:HD23</td>
<td>1.81</td>
<td>0.46</td>
</tr>
<tr>
<td>1:B:314:PHE:O</td>
<td>1:B:479:ILE:HG23</td>
<td>2.16</td>
<td>0.46</td>
</tr>
<tr>
<td>1:B:401:LEU:HD23</td>
<td>1:B:402:ILE:N</td>
<td>2.30</td>
<td>0.46</td>
</tr>
<tr>
<td>1:B:640:TRP:O</td>
<td>1:B:644:ILE:HG13</td>
<td>2.15</td>
<td>0.46</td>
</tr>
<tr>
<td>1:B:870:GLN:O</td>
<td>1:B:871:LEU:C</td>
<td>2.54</td>
<td>0.46</td>
</tr>
<tr>
<td>1:B:918:PHE:HE2</td>
<td>1:B:934:VAL:CG1</td>
<td>2.29</td>
<td>0.46</td>
</tr>
<tr>
<td>1:A:725:TYR:CE1</td>
<td>1:A:729:TYR:HD1</td>
<td>2.34</td>
<td>0.46</td>
</tr>
<tr>
<td>1:B:604:ILE:C</td>
<td>8:B:1014:HOH:O</td>
<td>2.54</td>
<td>0.46</td>
</tr>
<tr>
<td>1:B:693:SER:O</td>
<td>1:B:697:LEU:HB2</td>
<td>2.16</td>
<td>0.46</td>
</tr>
<tr>
<td>1:B:945:LEU:O</td>
<td>1:B:949:LEU:N</td>
<td>2.47</td>
<td>0.46</td>
</tr>
<tr>
<td>1:A:238:LYS:HB3</td>
<td>1:A:238:LYS:HE2</td>
<td>1.81</td>
<td>0.45</td>
</tr>
<tr>
<td>1:A:793:ILE:O</td>
<td>1:A:797:VAL:HG23</td>
<td>2.16</td>
<td>0.45</td>
</tr>
<tr>
<td>1:A:80:LEU:HD22</td>
<td>1:A:81:PHE:H</td>
<td>1.81</td>
<td>0.45</td>
</tr>
<tr>
<td>1:B:95:GLU:HG2</td>
<td>1:B:168:PHE:HE1</td>
<td>1.81</td>
<td>0.45</td>
</tr>
<tr>
<td>1:B:417:PHE:CE1</td>
<td>1:B:421:CYS:SG</td>
<td>3.09</td>
<td>0.45</td>
</tr>
<tr>
<td>1:B:60:GLU:HB2</td>
<td>1:B:61:ARG:HA</td>
<td>1.98</td>
<td>0.45</td>
</tr>
<tr>
<td>1:A:863:ALA:HB1</td>
<td>1:A:904:HIS:CE1</td>
<td>2.51</td>
<td>0.45</td>
</tr>
<tr>
<td>1:B:140:LEU:O</td>
<td>1:B:148:ILE:HA</td>
<td>2.16</td>
<td>0.45</td>
</tr>
<tr>
<td>1:B:316:ILE:HD11</td>
<td>1:B:483:LYS:HG3</td>
<td>1.98</td>
<td>0.45</td>
</tr>
<tr>
<td>1:B:919:GLU:O</td>
<td>1:B:922:GLU:HB2</td>
<td>2.17</td>
<td>0.45</td>
</tr>
<tr>
<td>1:A:784:LEU:CD1</td>
<td>1:A:786:ILE:HD12</td>
<td>2.47</td>
<td>0.45</td>
</tr>
<tr>
<td>1:A:928:LEU:HB2</td>
<td>1:A:930:ILE:HG22</td>
<td>1.98</td>
<td>0.45</td>
</tr>
<tr>
<td>1:B:651:HIS:CD2</td>
<td>1:B:652:THR:N</td>
<td>2.84</td>
<td>0.45</td>
</tr>
<tr>
<td>1:B:729:TYR:O</td>
<td>1:B:730:PHE:HB2</td>
<td>2.15</td>
<td>0.45</td>
</tr>
<tr>
<td>1:A:647:LEU:HD13</td>
<td>1:A:686:TYR:CE2</td>
<td>2.51</td>
<td>0.45</td>
</tr>
<tr>
<td>1:A:870:GLN:O</td>
<td>1:A:871:LEU:C</td>
<td>2.54</td>
<td>0.45</td>
</tr>
<tr>
<td>1:A:892:TYR:CE1</td>
<td>6:A:1083:MES:H31</td>
<td>2.51</td>
<td>0.45</td>
</tr>
<tr>
<td>1:B:570:VAL:HG22</td>
<td>1:B:943:LYS:NZ</td>
<td>2.31</td>
<td>0.45</td>
</tr>
<tr>
<td>1:A:911:LEU:O</td>
<td>1:A:915:LYS:HB2</td>
<td>2.16</td>
<td>0.45</td>
</tr>
<tr>
<td>1:B:145:HIS:O</td>
<td>1:B:147:GLN:HG3</td>
<td>2.15</td>
<td>0.45</td>
</tr>
<tr>
<td>1:B:202:THR:OG1</td>
<td>1:B:202:THR:O</td>
<td>2.29</td>
<td>0.45</td>
</tr>
<tr>
<td>1:B:638:HIS:HB2</td>
<td>1:B:642:GLN:HE21</td>
<td>1.80</td>
<td>0.45</td>
</tr>
<tr>
<td>1:B:911:LEU:O</td>
<td>1:B:915:LYS:HB2</td>
<td>2.17</td>
<td>0.45</td>
</tr>
<tr>
<td>1:B:382:THR:O</td>
<td>1:B:489:ASN:HA</td>
<td>2.16</td>
<td>0.45</td>
</tr>
<tr>
<td>1:B:675:LEU:HA</td>
<td>1:B:675:LEU:HD12</td>
<td>1.74</td>
<td>0.45</td>
</tr>
<tr>
<td>1:B:725:TYR:CE1</td>
<td>1:B:729:TYR:HD1</td>
<td>2.35</td>
<td>0.45</td>
</tr>
<tr>
<td>1:B:793:ILE:O</td>
<td>1:B:797:VAL:HG23</td>
<td>2.16</td>
<td>0.45</td>
</tr>
<tr>
<td>1:A:140:LEU:O</td>
<td>1:A:148:ILE:HA</td>
<td>2.15</td>
<td>0.45</td>
</tr>
<tr>
<td>1:A:141:SER:O</td>
<td>1:A:143:PRO:HD3</td>
<td>2.16</td>
<td>0.45</td>
</tr>
</tbody>
</table>
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:A:200:GLU:HA</td>
<td>1:A:201:PRO:HA</td>
<td>1.65</td>
<td>0.45</td>
</tr>
<tr>
<td>1:A:553:LYS:O</td>
<td>1:A:559:LEU:HA</td>
<td>2.17</td>
<td>0.45</td>
</tr>
<tr>
<td>1:A:537:MET:HE2</td>
<td>1:A:589:PRO:HG3</td>
<td>1.98</td>
<td>0.45</td>
</tr>
<tr>
<td>1:B:537:MET:HG3</td>
<td>1:B:587:HIS:O</td>
<td>2.16</td>
<td>0.45</td>
</tr>
<tr>
<td>1:A:100:LEU:HD12</td>
<td>1:A:101:VAL:O</td>
<td>2.15</td>
<td>0.45</td>
</tr>
<tr>
<td>1:B:238:LYS:HE2</td>
<td>1:B:238:LYS:HB3</td>
<td>1.75</td>
<td>0.45</td>
</tr>
<tr>
<td>1:A:337:GLU:HA</td>
<td>1:A:342:ILE:HG12</td>
<td>1.98</td>
<td>0.45</td>
</tr>
<tr>
<td>1:B:557:CYS:SG</td>
<td>1:B:617:LYS:CG</td>
<td>3.05</td>
<td>0.45</td>
</tr>
<tr>
<td>1:B:659:ARG:O</td>
<td>1:B:663:ILE:HG13</td>
<td>2.17</td>
<td>0.45</td>
</tr>
<tr>
<td>1:B:860:HIS:O</td>
<td>1:B:860:HIS:CD2</td>
<td>2.68</td>
<td>0.45</td>
</tr>
<tr>
<td>1:A:160:LEU:HD13</td>
<td>1:A:160:LEU:HA</td>
<td>1.60</td>
<td>0.45</td>
</tr>
<tr>
<td>1:B:100:LEU:HD12</td>
<td>1:B:101:VAL:O</td>
<td>2.17</td>
<td>0.45</td>
</tr>
<tr>
<td>1:B:122:LEU:N</td>
<td>1:B:137:LEU:HD23</td>
<td>2.31</td>
<td>0.45</td>
</tr>
<tr>
<td>1:B:592:TYR:OH</td>
<td>1:B:612:LEU:HD21</td>
<td>2.17</td>
<td>0.45</td>
</tr>
<tr>
<td>1:B:667:PHE:CE2</td>
<td>1:B:680:ALA:HB1</td>
<td>2.52</td>
<td>0.45</td>
</tr>
<tr>
<td>1:A:123:GLN:HE22</td>
<td>1:A:133:PRO:HB3</td>
<td>1.81</td>
<td>0.44</td>
</tr>
<tr>
<td>1:B:155:LYS:HB2</td>
<td>1:B:155:LYS:HE2</td>
<td>1.76</td>
<td>0.44</td>
</tr>
<tr>
<td>1:B:89:LEU:HD13</td>
<td>1:B:181:LYS:HD3</td>
<td>1.99</td>
<td>0.44</td>
</tr>
<tr>
<td>1:B:451:ASP:C</td>
<td>6:B:1084:MES:HE61</td>
<td>2.38</td>
<td>0.44</td>
</tr>
<tr>
<td>1:B:651:HIS:HE1</td>
<td>1:B:689:HIS:O</td>
<td>2.00</td>
<td>0.44</td>
</tr>
<tr>
<td>1:A:159:HIS:O</td>
<td>1:A:160:LEU:HD22</td>
<td>2.18</td>
<td>0.44</td>
</tr>
<tr>
<td>1:A:838:LEU:O</td>
<td>1:A:842:GLU:HG2</td>
<td>2.17</td>
<td>0.44</td>
</tr>
<tr>
<td>1:A:537:MET:HE2</td>
<td>1:A:589:PRO:CD</td>
<td>2.47</td>
<td>0.44</td>
</tr>
<tr>
<td>1:A:713:ARG:CG</td>
<td>1:A:713:ARG:HH11</td>
<td>2.30</td>
<td>0.44</td>
</tr>
<tr>
<td>1:A:918:PHE:CE2</td>
<td>1:A:934:VAL:CG1</td>
<td>2.99</td>
<td>0.44</td>
</tr>
<tr>
<td>1:A:949:LEU:HB3</td>
<td>1:A:950:PRO:CD</td>
<td>2.47</td>
<td>0.44</td>
</tr>
<tr>
<td>1:B:764:ALA:HB3</td>
<td>1:B:765:PRO:HD3</td>
<td>1.99</td>
<td>0.44</td>
</tr>
<tr>
<td>1:A:442:THR:O</td>
<td>1:A:446:ILE:HG13</td>
<td>2.17</td>
<td>0.44</td>
</tr>
<tr>
<td>1:B:122:LEU:N</td>
<td>1:B:137:LEU:CD2</td>
<td>2.81</td>
<td>0.44</td>
</tr>
<tr>
<td>1:A:442:THR:HG23</td>
<td>1:A:445:GLN:CG</td>
<td>2.45</td>
<td>0.44</td>
</tr>
<tr>
<td>1:B:860:HIS:CD2</td>
<td>1:B:860:HIS:C</td>
<td>2.91</td>
<td>0.44</td>
</tr>
<tr>
<td>1:A:257:VAL:HG23</td>
<td>1:A:258:LYS:O</td>
<td>2.18</td>
<td>0.44</td>
</tr>
<tr>
<td>1:A:357:SER:O</td>
<td>1:A:360:ASP:HB2</td>
<td>2.17</td>
<td>0.44</td>
</tr>
<tr>
<td>1:A:67:LEU:CA</td>
<td>1:A:145:HIS:CD2</td>
<td>3.01</td>
<td>0.44</td>
</tr>
<tr>
<td>1:B:160:LEU:HD13</td>
<td>1:B:160:LEU:HA</td>
<td>1.62</td>
<td>0.44</td>
</tr>
<tr>
<td>1:B:738:SER:O</td>
<td>1:B:751:ARG:HD3</td>
<td>2.18</td>
<td>0.44</td>
</tr>
<tr>
<td>1:B:884:LEU:HD12</td>
<td>1:B:884:LEU:HA</td>
<td>1.70</td>
<td>0.44</td>
</tr>
<tr>
<td>1:B:889:LEU:O</td>
<td>1:B:889:LEU:HD12</td>
<td>2.17</td>
<td>0.44</td>
</tr>
<tr>
<td>1:A:463:ASN:HB3</td>
<td>8:A:1012:HOH:O</td>
<td>2.18</td>
<td>0.44</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:B:385:TRP:CB</td>
<td>8:B:1013:HOH:O</td>
<td>2.65</td>
<td>0.44</td>
</tr>
<tr>
<td>1:B:664:HIS:NE2</td>
<td>1:B:668:GLN:HG3</td>
<td>2.33</td>
<td>0.44</td>
</tr>
<tr>
<td>1:B:682:ASP:O</td>
<td>1:B:685:TYR:HD2</td>
<td>2.01</td>
<td>0.44</td>
</tr>
<tr>
<td>1:A:640:TRP:CD1</td>
<td>1:A:675:LEU:HD21</td>
<td>2.52</td>
<td>0.44</td>
</tr>
<tr>
<td>1:B:727:LEU:O</td>
<td>1:B:731:LYS:HB2</td>
<td>2.18</td>
<td>0.44</td>
</tr>
<tr>
<td>1:A:227:GLU:HG3</td>
<td>4:A:1071:NAG:HG82</td>
<td>2.00</td>
<td>0.44</td>
</tr>
<tr>
<td>1:A:320:LEU:HD23</td>
<td>1:A:320:LEU:N</td>
<td>2.33</td>
<td>0.44</td>
</tr>
<tr>
<td>1:B:106:GLN:HE21</td>
<td>1:B:155:LYS:NZ</td>
<td>2.16</td>
<td>0.44</td>
</tr>
<tr>
<td>1:B:331:PHE:CD1</td>
<td>1:B:333:PRO:HD2</td>
<td>2.53</td>
<td>0.44</td>
</tr>
<tr>
<td>1:A:760:LYS:HD2</td>
<td>1:A:773:LEU:HD13</td>
<td>2.00</td>
<td>0.43</td>
</tr>
<tr>
<td>1:A:293:ARG:NH2</td>
<td>7:B:1079:MAN:O2</td>
<td>2.51</td>
<td>0.43</td>
</tr>
<tr>
<td>1:A:640:TRP:O</td>
<td>1:A:644:ILE:HG13</td>
<td>2.17</td>
<td>0.43</td>
</tr>
<tr>
<td>1:B:385:TRP:CG</td>
<td>1:B:386:TRP:N</td>
<td>2.86</td>
<td>0.43</td>
</tr>
<tr>
<td>1:B:666:VAL:HG11</td>
<td>1:B:680:ALA:HA</td>
<td>1.99</td>
<td>0.43</td>
</tr>
<tr>
<td>1:B:714:ASN:O</td>
<td>1:B:716:SER:N</td>
<td>2.51</td>
<td>0.43</td>
</tr>
<tr>
<td>1:B:838:LEU:HD13</td>
<td>1:B:842:GLU:CG</td>
<td>2.48</td>
<td>0.43</td>
</tr>
<tr>
<td>1:A:140:LEU:CD1</td>
<td>1:A:151:LEU:HD11</td>
<td>2.49</td>
<td>0.43</td>
</tr>
<tr>
<td>1:A:223:LYS:HD3</td>
<td>1:A:252:HIS:CE1</td>
<td>2.53</td>
<td>0.43</td>
</tr>
<tr>
<td>1:A:314:PHE:HA</td>
<td>1:A:479:ILE:CD1</td>
<td>2.49</td>
<td>0.43</td>
</tr>
<tr>
<td>1:A:880:TRP:CZ2</td>
<td>1:A:889:LEU:HD23</td>
<td>2.52</td>
<td>0.43</td>
</tr>
<tr>
<td>1:A:918:PHE:CZ</td>
<td>1:A:934:VAL:HG11</td>
<td>2.53</td>
<td>0.43</td>
</tr>
<tr>
<td>1:A:932:GLN:HE21</td>
<td>1:A:932:GLN:HA</td>
<td>1.84</td>
<td>0.43</td>
</tr>
<tr>
<td>1:B:352:ASP:HA</td>
<td>1:B:353:PRO:HD3</td>
<td>1.82</td>
<td>0.43</td>
</tr>
<tr>
<td>1:B:566:PHE:C</td>
<td>1:B:567:LEU:HD12</td>
<td>2.38</td>
<td>0.43</td>
</tr>
<tr>
<td>1:B:730:PHE:O</td>
<td>1:B:733:VAL:HG12</td>
<td>2.18</td>
<td>0.43</td>
</tr>
<tr>
<td>1:A:122:LEU:N</td>
<td>1:A:137:LEU:HD23</td>
<td>2.33</td>
<td>0.43</td>
</tr>
<tr>
<td>1:A:159:HIS:C</td>
<td>1:A:160:LEU:HD22</td>
<td>2.39</td>
<td>0.43</td>
</tr>
<tr>
<td>1:A:245:GLU:CG</td>
<td>1:A:246:GLY:N</td>
<td>2.74</td>
<td>0.43</td>
</tr>
<tr>
<td>1:A:488:ARG:CG</td>
<td>1:A:489:ASN:H</td>
<td>2.27</td>
<td>0.43</td>
</tr>
<tr>
<td>1:B:159:HIS:C</td>
<td>1:B:160:LEU:HD22</td>
<td>2.38</td>
<td>0.43</td>
</tr>
<tr>
<td>1:B:434:ARG:HB2</td>
<td>1:B:435:PRO:CD</td>
<td>2.47</td>
<td>0.43</td>
</tr>
<tr>
<td>1:B:650:ASN:HB3</td>
<td>1:B:653:LEU:HG</td>
<td>2.00</td>
<td>0.43</td>
</tr>
<tr>
<td>1:B:634:HIS:CE1</td>
<td>1:B:674:ARG:HB3</td>
<td>2.54</td>
<td>0.43</td>
</tr>
<tr>
<td>1:B:860:HIS:NE2</td>
<td>1:B:864:ARG:HD2</td>
<td>2.33</td>
<td>0.43</td>
</tr>
<tr>
<td>1:A:155:LYS:HB2</td>
<td>1:A:155:LYS:HE2</td>
<td>1.81</td>
<td>0.43</td>
</tr>
<tr>
<td>1:A:342:ILE:HG22</td>
<td>1:A:344:TYR:CE1</td>
<td>2.53</td>
<td>0.43</td>
</tr>
<tr>
<td>1:B:104:ALA:H</td>
<td>1:B:158:PRO:HG3</td>
<td>1.82</td>
<td>0.43</td>
</tr>
<tr>
<td>1:B:622:LYS:HZ3</td>
<td>1:B:658:ASP:CB</td>
<td>2.31</td>
<td>0.43</td>
</tr>
</tbody>
</table>

Continued on next page...
<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:B:701:SER:OG</td>
<td>1:B:702:TYR:N</td>
<td>2.51</td>
<td>0.43</td>
</tr>
<tr>
<td>1:A:537:MET:HE2</td>
<td>1:A:589:PRO:HD3</td>
<td>2.01</td>
<td>0.43</td>
</tr>
<tr>
<td>1:A:581:GLN:HB3</td>
<td>1:A:582:GLU:H</td>
<td>1.54</td>
<td>0.43</td>
</tr>
<tr>
<td>1:A:592:TYR:OH</td>
<td>1:A:612:LEU:HD21</td>
<td>2.19</td>
<td>0.43</td>
</tr>
<tr>
<td>1:A:622:LYS:HZ3</td>
<td>1:A:658:ASP:HB3</td>
<td>1.83</td>
<td>0.43</td>
</tr>
<tr>
<td>1:A:889:LEU:HA</td>
<td>1:A:890:GLY:HA2</td>
<td>1.54</td>
<td>0.43</td>
</tr>
<tr>
<td>1:B:717:ASP:OD2</td>
<td>1:B:718:ILE:HG13</td>
<td>2.19</td>
<td>0.43</td>
</tr>
<tr>
<td>1:B:733:VAL:HG13</td>
<td>1:B:734:ILE:N</td>
<td>2.33</td>
<td>0.43</td>
</tr>
<tr>
<td>1:A:860:HIS:O</td>
<td>1:A:860:HIS:CD2</td>
<td>2.72</td>
<td>0.43</td>
</tr>
<tr>
<td>1:A:889:LEU:HD12</td>
<td>1:A:889:LEU:O</td>
<td>2.18</td>
<td>0.43</td>
</tr>
<tr>
<td>1:B:75:PRO:CG</td>
<td>1:B:211:PHE:CD1</td>
<td>2.96</td>
<td>0.43</td>
</tr>
<tr>
<td>1:B:320:LEU:N</td>
<td>1:B:320:LEU:HD23</td>
<td>2.33</td>
<td>0.43</td>
</tr>
<tr>
<td>1:B:385:TRP:CG</td>
<td>8:B:1013:HOH:O</td>
<td>2.68</td>
<td>0.43</td>
</tr>
<tr>
<td>1:B:551:VAL:HG22</td>
<td>1:B:562:GLN:O</td>
<td>2.18</td>
<td>0.43</td>
</tr>
<tr>
<td>1:B:625:VAL:O</td>
<td>1:B:626:ASP:HB2</td>
<td>2.19</td>
<td>0.43</td>
</tr>
<tr>
<td>1:B:910:LYS:HA</td>
<td>1:B:913:GLU:HG3</td>
<td>2.00</td>
<td>0.43</td>
</tr>
<tr>
<td>1:A:142:TYR:CZ</td>
<td>1:A:144:ALA:HB3</td>
<td>2.54</td>
<td>0.43</td>
</tr>
<tr>
<td>1:A:126:GLU:O</td>
<td>1:A:160:LEU:HD12</td>
<td>2.19</td>
<td>0.43</td>
</tr>
<tr>
<td>1:A:202:THR:OG1</td>
<td>1:A:202:THR:O</td>
<td>2.32</td>
<td>0.43</td>
</tr>
<tr>
<td>1:B:323:LEU:HD13</td>
<td>1:B:340:GLY:HA2</td>
<td>2.00</td>
<td>0.43</td>
</tr>
<tr>
<td>1:B:90:ASP:HB2</td>
<td>1:B:170:ALA:O</td>
<td>2.19</td>
<td>0.43</td>
</tr>
<tr>
<td>1:A:314:PHE:O</td>
<td>1:A:479:ILE:HD12</td>
<td>2.19</td>
<td>0.43</td>
</tr>
<tr>
<td>1:B:184:TYR:HB2</td>
<td>8:B:973:HOH:O</td>
<td>2.18</td>
<td>0.43</td>
</tr>
<tr>
<td>1:B:622:LYS:HZ2</td>
<td>1:B:662:LEU:HG</td>
<td>1.83</td>
<td>0.43</td>
</tr>
<tr>
<td>1:B:907:SER:O</td>
<td>1:B:942:ILE:HD11</td>
<td>2.19</td>
<td>0.43</td>
</tr>
<tr>
<td>1:A:378:GLY:HA2</td>
<td>1:A:392:ASN:OD1</td>
<td>2.19</td>
<td>0.43</td>
</tr>
<tr>
<td>1:A:401:LEU:HD23</td>
<td>1:A:402:ILE:N</td>
<td>2.34</td>
<td>0.43</td>
</tr>
<tr>
<td>1:A:620:TRP:C</td>
<td>1:A:620:TRP:CE3</td>
<td>2.92</td>
<td>0.43</td>
</tr>
<tr>
<td>1:B:357:SER:O</td>
<td>1:B:360:ASP:HB2</td>
<td>2.18</td>
<td>0.43</td>
</tr>
<tr>
<td>1:B:74:ILE:HA</td>
<td>1:B:75:PRO:HD3</td>
<td>1.73</td>
<td>0.43</td>
</tr>
<tr>
<td>1:B:943:LYS:O</td>
<td>1:B:944:TRP:C</td>
<td>2.58</td>
<td>0.43</td>
</tr>
<tr>
<td>1:A:145:HIS:O</td>
<td>1:A:147:GLN:HG3</td>
<td>2.19</td>
<td>0.42</td>
</tr>
<tr>
<td>1:A:587:HIS:CE1</td>
<td>1:A:606:LYS:HD3</td>
<td>2.54</td>
<td>0.42</td>
</tr>
<tr>
<td>1:A:738:SER:O</td>
<td>1:A:751:ARG:HD3</td>
<td>2.18</td>
<td>0.42</td>
</tr>
<tr>
<td>1:A:954:THR:O</td>
<td>1:A:958:VAL:HG23</td>
<td>2.19</td>
<td>0.42</td>
</tr>
<tr>
<td>1:B:567:LEU:HD12</td>
<td>1:B:567:LEU:N</td>
<td>2.33</td>
<td>0.42</td>
</tr>
<tr>
<td>1:B:634:HIS:NE2</td>
<td>1:B:674:ARG:HB3</td>
<td>2.33</td>
<td>0.42</td>
</tr>
<tr>
<td>1:A:741:ASP:OD2</td>
<td>1:A:787:PRO:CB</td>
<td>2.61</td>
<td>0.42</td>
</tr>
<tr>
<td>1:B:355:THR:O</td>
<td>1:B:355:THR:CG2</td>
<td>2.66</td>
<td>0.42</td>
</tr>
<tr>
<td>1:A:764:ALA:HB3</td>
<td>1:A:765:PRO:HD3</td>
<td>2.01</td>
<td>0.42</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:B:240:LYS:HB3</td>
<td>1:B:240:LYS:HE2</td>
<td>1.75</td>
<td>0.42</td>
</tr>
<tr>
<td>1:B:566:PHE:CZ</td>
<td>1:B:672:ALA:HB2</td>
<td>2.54</td>
<td>0.42</td>
</tr>
<tr>
<td>1:B:647:LEU:HD21</td>
<td>1:B:659:ARG:HG2</td>
<td>2.01</td>
<td>0.42</td>
</tr>
<tr>
<td>1:B:884:LEU:HD11</td>
<td>1:B:889:LEU:HB3</td>
<td>2.01</td>
<td>0.42</td>
</tr>
<tr>
<td>1:B:938:ILE:O</td>
<td>1:B:941:ASN:HB2</td>
<td>2.19</td>
<td>0.42</td>
</tr>
<tr>
<td>1:B:949:LEU:HB3</td>
<td>1:B:950:PRO:CD</td>
<td>2.48</td>
<td>0.42</td>
</tr>
<tr>
<td>1:A:419:ASN:N</td>
<td>1:A:419:ASN:HD22</td>
<td>2.17</td>
<td>0.42</td>
</tr>
<tr>
<td>1:B:465:LEU:HD22</td>
<td>1:B:496:TRP:HZ3</td>
<td>2.52</td>
<td>0.42</td>
</tr>
<tr>
<td>1:A:547:ILE:HA</td>
<td>1:A:548:PRO:HD3</td>
<td>1.90</td>
<td>0.42</td>
</tr>
<tr>
<td>1:A:659:ARG:O</td>
<td>1:A:663:ILE:HG13</td>
<td>2.20</td>
<td>0.42</td>
</tr>
<tr>
<td>1:B:441:GLU:N</td>
<td>1:B:445:GLN:OE1</td>
<td>2.50</td>
<td>0.42</td>
</tr>
<tr>
<td>1:B:670:VAL:HG12</td>
<td>1:B:948:ASN:ND2</td>
<td>2.35</td>
<td>0.42</td>
</tr>
<tr>
<td>1:B:718:ILE:HG21</td>
<td>1:B:952:LEU:HD22</td>
<td>2.02</td>
<td>0.42</td>
</tr>
<tr>
<td>1:A:385:TRP:CG</td>
<td>1:A:386:TRP:N</td>
<td>2.86</td>
<td>0.42</td>
</tr>
<tr>
<td>1:A:921:LEU:O</td>
<td>1:A:922:GLU:HB2</td>
<td>2.19</td>
<td>0.42</td>
</tr>
<tr>
<td>1:B:419:ASN:O</td>
<td>1:B:423:GLU:HG3</td>
<td>2.20</td>
<td>0.42</td>
</tr>
<tr>
<td>1:B:422:PHE:O</td>
<td>1:B:425:ILE:HB</td>
<td>2.19</td>
<td>0.42</td>
</tr>
<tr>
<td>1:B:412:GLN:HB2</td>
<td>1:B:746:TRP:HE1</td>
<td>1.85</td>
<td>0.42</td>
</tr>
<tr>
<td>1:A:113:LYS:HG3</td>
<td>1:A:114:ASP:OD1</td>
<td>2.19</td>
<td>0.42</td>
</tr>
<tr>
<td>1:A:288:ALA:O</td>
<td>1:A:289:SER:C</td>
<td>2.58</td>
<td>0.42</td>
</tr>
<tr>
<td>1:A:57:THR:HG23</td>
<td>1:A:141:SER:O</td>
<td>2.20</td>
<td>0.42</td>
</tr>
<tr>
<td>1:B:213:GLU:HB2</td>
<td>1:B:216:PHE:HD2</td>
<td>1.85</td>
<td>0.42</td>
</tr>
<tr>
<td>1:B:386:TRP:CE3</td>
<td>1:B:389:ILE:HD13</td>
<td>2.55</td>
<td>0.42</td>
</tr>
<tr>
<td>1:B:466:LYS:HB2</td>
<td>1:B:474:PHE:CD2</td>
<td>2.54</td>
<td>0.42</td>
</tr>
<tr>
<td>1:B:313:TYR:O</td>
<td>1:B:479:ILE:HD11</td>
<td>2.20</td>
<td>0.42</td>
</tr>
<tr>
<td>1:B:765:PRO:O</td>
<td>1:B:768:GLN:HB2</td>
<td>2.20</td>
<td>0.42</td>
</tr>
<tr>
<td>1:A:729:TYR:O</td>
<td>1:A:730:PHE:HB2</td>
<td>2.20</td>
<td>0.42</td>
</tr>
<tr>
<td>1:A:750:LEU:HD12</td>
<td>1:A:754:LEU:HG</td>
<td>2.02</td>
<td>0.42</td>
</tr>
<tr>
<td>1:A:774:PHE:HB2</td>
<td>1:A:794:VAL:HG12</td>
<td>2.01</td>
<td>0.42</td>
</tr>
<tr>
<td>1:A:884:LEU:HD11</td>
<td>1:A:889:LEU:HB3</td>
<td>2.01</td>
<td>0.42</td>
</tr>
<tr>
<td>1:B:412:GLN:HB2</td>
<td>1:B:746:TRP:NE1</td>
<td>2.34</td>
<td>0.42</td>
</tr>
<tr>
<td>1:B:497:SER:OG</td>
<td>1:B:535:LYS:HE3</td>
<td>2.18</td>
<td>0.42</td>
</tr>
<tr>
<td>1:A:934:VAL:HG12</td>
<td>1:A:935:LEU:N</td>
<td>2.35</td>
<td>0.42</td>
</tr>
<tr>
<td>1:B:239:VAL:CG1</td>
<td>1:B:240:LYS:HE3</td>
<td>2.48</td>
<td>0.42</td>
</tr>
<tr>
<td>1:A:945:LEU:HD23</td>
<td>1:A:945:LEU:HA</td>
<td>1.67</td>
<td>0.42</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:A:122:LEU:CB</td>
<td>1:A:137:LEU:HD21</td>
<td>2.50</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:675:LEU:HA</td>
<td>1:A:675:LEU:HD12</td>
<td>1.73</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:82:VAL:O</td>
<td>1:A:84:PRO:HD3</td>
<td>2.20</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:919:GLU:O</td>
<td>1:A:922:GLU:CB</td>
<td>2.68</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:402:ILE:HG12</td>
<td>1:B:402:ILE:H</td>
<td>1.57</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:647:LEU:HD23</td>
<td>1:B:647:LEU:HA</td>
<td>1.78</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:693:SER:N</td>
<td>1:B:694:PRO:CD</td>
<td>2.82</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:935:LEU:O</td>
<td>1:A:939:THR:HG23</td>
<td>2.19</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:141:SER:O</td>
<td>1:B:143:PRO:HD3</td>
<td>2.19</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:588:ILE:O</td>
<td>1:B:588:ILE:HG23</td>
<td>2.21</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:784:LEU:HD12</td>
<td>1:B:786:ILE:HD12</td>
<td>2.01</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:201:PRO:HD2</td>
<td>1:A:202:THR:H</td>
<td>1.84</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:485:PHE:O</td>
<td>1:A:486:SER:C</td>
<td>2.57</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:105:THR:O</td>
<td>1:B:156:LEU:HD23</td>
<td>2.19</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:67:LEU:HD12</td>
<td>1:B:68:ARG:N</td>
<td>2.34</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:739:TRP:CE2</td>
<td>1:B:769:LYS:HG2</td>
<td>2.55</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:537:MET:HG3</td>
<td>1:A:587:HIS:O</td>
<td>2.20</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:723:LYS:HG3</td>
<td>1:A:761:LEU:HG</td>
<td>2.02</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:600:ILE:CD1</td>
<td>1:B:625:VAL:HG21</td>
<td>2.50</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:662:LEU:HB3</td>
<td>1:B:683:MET:CE</td>
<td>2.50</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:721:ASN:ND2</td>
<td>1:B:724:ARG:HH12</td>
<td>2.19</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:750:LEU:HD12</td>
<td>1:B:754:LEU:HG</td>
<td>2.01</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:769:LYS:HD2</td>
<td>1:B:773:LEU:HD13</td>
<td>2.00</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:122:LEU:N</td>
<td>1:A:137:LEU:CD2</td>
<td>2.83</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:138:LYS:HE3</td>
<td>1:A:138:LYS:HB2</td>
<td>1.87</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:565:ARG:NH1</td>
<td>1:A:581:GLN:HB2</td>
<td>2.33</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:809:LEU:O</td>
<td>1:A:812:TYR:HB3</td>
<td>2.20</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:860:HIS:NE2</td>
<td>1:A:864:ARG:HD2</td>
<td>2.35</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:318:TYR:CZ</td>
<td>1:B:320:LEU:HB2</td>
<td>2.55</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:366:ARG:NH1</td>
<td>1:B:416:TYR:CE1</td>
<td>2.89</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:549:LEU:HB2</td>
<td>1:B:566:PHE:CD2</td>
<td>2.55</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:605:LEU:HD11</td>
<td>1:B:607:SER:O</td>
<td>2.20</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:620:TRP:CE3</td>
<td>1:B:620:TRP:C</td>
<td>2.93</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:104:ALA:CB</td>
<td>1:A:158:PRO:HD3</td>
<td>2.47</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:83:HIS:CD2</td>
<td>1:A:225:ARG:HB3</td>
<td>2.56</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:122:LEU:CB</td>
<td>1:B:137:LEU:HD21</td>
<td>2.49</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:282:VAL:HG21</td>
<td>1:B:318:TYR:HD2</td>
<td>1.86</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:917:PHE:O</td>
<td>1:B:920:SER:HB3</td>
<td>2.20</td>
<td>0.41</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:A:314:PHE:CE1</td>
<td>1:A:377:PHE:HE2</td>
<td>2.38</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:717:ASP:OD2</td>
<td>1:A:718:ILE:HG13</td>
<td>2.20</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:183:THR:HA</td>
<td>1:B:192:ARG:O</td>
<td>2.21</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:80:GLU:HB2</td>
<td>1:B:61:ARG:HB3</td>
<td>2.02</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:75:PRO:CG</td>
<td>1:A:211:PHE:CD1</td>
<td>2.95</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:882:HIS:NE2</td>
<td>1:A:886:LYS:HE2</td>
<td>2.36</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:943:LYS:O</td>
<td>1:A:944:TRP:C</td>
<td>2.58</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:314:PHE:CE1</td>
<td>1:B:377:PHE:HE2</td>
<td>2.39</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:327:ALA:HB2</td>
<td>1:B:349:LEU:HD23</td>
<td>2.03</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:537:MET:HA</td>
<td>1:B:587:HIS:HB2</td>
<td>2.02</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:889:LEU:HD12</td>
<td>1:B:889:LEU:C</td>
<td>2.41</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:935:LEU:O</td>
<td>1:B:939:THR:HG23</td>
<td>2.21</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:497:SER:OG</td>
<td>1:A:535:LYS:HE3</td>
<td>2.21</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:664:HIS:NE2</td>
<td>1:A:668:GLN:HG3</td>
<td>2.35</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:693:SER:N</td>
<td>1:A:694:PRO:CD</td>
<td>2.84</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:408:TYR:N</td>
<td>1:B:409:PRO:HD3</td>
<td>2.36</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:801:THR:HG23</td>
<td>1:B:804:GLY:N</td>
<td>2.24</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:889:LEU:HA</td>
<td>1:B:890:GLY:HA2</td>
<td>1.56</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:660:VAL:HG12</td>
<td>1:A:661:GLY:N</td>
<td>2.35</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:67:LEU:CA</td>
<td>1:A:145:HIS:HD2</td>
<td>2.29</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:860:HIS:C</td>
<td>1:A:860:HIS:CD2</td>
<td>2.94</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:153:PRO:O</td>
<td>1:B:154:GLU:HG3</td>
<td>2.20</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:424:VAL:HG13</td>
<td>1:B:425:ILE:N</td>
<td>2.36</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:726:LEU:HA</td>
<td>1:B:726:LEU:HD23</td>
<td>1.84</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:889:LEU:HD13</td>
<td>1:B:928:LEU:HD21</td>
<td>2.03</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:64:TRP:CD2</td>
<td>1:A:70:PRO:HG3</td>
<td>2.55</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:113:LYS:HG3</td>
<td>1:B:114:ASP:OD1</td>
<td>2.21</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:636:GLU:HG3</td>
<td>1:B:636:GLU:H</td>
<td>1.69</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:741:ASP:OD2</td>
<td>1:B:787:PRO:CB</td>
<td>2.63</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:779:GLU:HG2</td>
<td>1:B:779:GLU:O</td>
<td>2.21</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:924:GLN:HG3</td>
<td>1:B:925:GLY:N</td>
<td>2.36</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:949:LEU:N</td>
<td>1:A:950:PRO:HD2</td>
<td>2.36</td>
<td>0.40</td>
</tr>
<tr>
<td>1:A:95:GLU:HG2</td>
<td>1:A:168:PHE:HE1</td>
<td>1.86</td>
<td>0.40</td>
</tr>
<tr>
<td>1:B:325:LEU:HD23</td>
<td>1:B:344:TYR:CE1</td>
<td>2.56</td>
<td>0.40</td>
</tr>
<tr>
<td>1:B:559:LEU:HD12</td>
<td>1:B:612:LEU:HB3</td>
<td>2.02</td>
<td>0.40</td>
</tr>
<tr>
<td>1:B:739:TRP:CE2</td>
<td>1:B:755:LEU:HD22</td>
<td>2.56</td>
<td>0.40</td>
</tr>
</tbody>
</table>

Continued on next page...
5.3 Torsion angles

5.3.1 Protein backbone

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.
The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Analysed</th>
<th>Favoured</th>
<th>Allowed</th>
<th>Outliers</th>
<th>Percentiles</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>863/967 (89%)</td>
<td>746 (86%)</td>
<td>95 (11%)</td>
<td>22 (2%)</td>
<td>6 30</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>851/967 (88%)</td>
<td>732 (86%)</td>
<td>89 (10%)</td>
<td>30 (4%)</td>
<td>4 23</td>
</tr>
<tr>
<td>All</td>
<td>All</td>
<td>1714/1934 (89%)</td>
<td>1478 (86%)</td>
<td>184 (11%)</td>
<td>52 (3%)</td>
<td>5 26</td>
</tr>
</tbody>
</table>

All (52) Ramachandran outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>55</td>
<td>VAL</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>245</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>417</td>
<td>PHE</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>596</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>616</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>715</td>
<td>ILE</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>922</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>923</td>
<td>ALA</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>245</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>417</td>
<td>PHE</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>569</td>
<td>GLY</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>596</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>616</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>715</td>
<td>ILE</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>922</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>924</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>926</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>216</td>
<td>PHE</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>545</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>603</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>925</td>
<td>GLY</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>216</td>
<td>PHE</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>603</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>925</td>
<td>GLY</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>619</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>628</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>921</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>60</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>155</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>545</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>628</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>763</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>155</td>
<td>LYS</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>535</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>56</td>
<td>ALA</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>379</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>535</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>619</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>921</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>927</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>764</td>
<td>ALA</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>765</td>
<td>PRO</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>932</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>764</td>
<td>ALA</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>765</td>
<td>PRO</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>379</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>763</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>337</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>712</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>943</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>615</td>
<td>PRO</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>201</td>
<td>PRO</td>
</tr>
</tbody>
</table>

5.3.2 Protein sidechains

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Analysed</th>
<th>Rotameric</th>
<th>Outliers</th>
<th>Percentiles</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>773/870 (89%)</td>
<td>677 (88%)</td>
<td>96 (12%)</td>
<td>5 [22]</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>770/870 (88%)</td>
<td>672 (87%)</td>
<td>98 (13%)</td>
<td>5 [20]</td>
</tr>
<tr>
<td>All</td>
<td>All</td>
<td>1543/1740 (89%)</td>
<td>1349 (87%)</td>
<td>194 (13%)</td>
<td>5 [21]</td>
</tr>
</tbody>
</table>

All (194) residues with a non-rotameric sidechain are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>61</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>72</td>
<td>VAL</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>79</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>87</td>
<td>THR</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>94</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>100</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>109</td>
<td>ILE</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>110</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>124</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>125</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>160</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>166</td>
<td>MET</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>181</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>193</td>
<td>ILE</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>197</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>202</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>215</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>231</td>
<td>ILE</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>278</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>285</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>289</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>320</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>321</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>322</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>352</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>355</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>364</td>
<td>VAL</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>366[A]</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>366[B]</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>367</td>
<td>VAL</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>372</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>382</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>383</td>
<td>MET</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>395</td>
<td>PHE</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>416</td>
<td>TYR</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>419</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>442</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>466</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>469</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>478</td>
<td>ILE</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>493</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>533</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>540</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>547</td>
<td>ILE</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>558</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>559</td>
<td>LEU</td>
</tr>
</tbody>
</table>

Continued on next page...
<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>560</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>581</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>582</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>583</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>585</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>591</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>598</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>604</td>
<td>ILE</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>605</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>610</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>618</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>621</td>
<td>VAL</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>632</td>
<td>ILE</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>636</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>641</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>645</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>649</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>660</td>
<td>VAL</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>675</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>684</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>686</td>
<td>TYR</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>697</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>701</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>705</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>713</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>720</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>721</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>729</td>
<td>TYR</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>730</td>
<td>PHE</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>741</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>750</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>761</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>766</td>
<td>CYS</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>767</td>
<td>ILE</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>769</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>791</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>825</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>828</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>855</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>859</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>865</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>871</td>
<td>LEU</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>889</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>895</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>911</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>916</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>922</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>927</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>933</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>934</td>
<td>VAL</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>58</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>61</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>72</td>
<td>VAL</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>79</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>87</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>94</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>100</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>109</td>
<td>ILE</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>110</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>124</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>160</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>166</td>
<td>MET</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>181</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>193</td>
<td>ILE</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>194</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>197</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>202</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>215</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>229</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>231</td>
<td>ILE</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>278</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>285</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>289</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>320</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>321</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>322</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>352</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>355</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>364</td>
<td>VAL</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>367</td>
<td>VAL</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>372</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>382</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>383</td>
<td>MET</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>395</td>
<td>PHE</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>B</td>
<td>416</td>
<td>TYR</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>419</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>442</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>466</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>469</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>478</td>
<td>ILE</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>493</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>533</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>540</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>547</td>
<td>ILE</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>558</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>559</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>560</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>570</td>
<td>VAL</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>583</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>585</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>591</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>598</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>604</td>
<td>ILE</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>605</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>609</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>610</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>618</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>621</td>
<td>VAL</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>632</td>
<td>ILE</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>636</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>645</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>649</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>660</td>
<td>VAL</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>675</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>684</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>686</td>
<td>TYR</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>697</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>701</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>713</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>720</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>721</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>728</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>729</td>
<td>TYR</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>730</td>
<td>PHE</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>741</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>750</td>
<td>LEU</td>
</tr>
</tbody>
</table>

Continued on next page...
Some sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (53) such sidechains are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>58</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>106</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>119</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>123</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>145</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>147</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>159</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>169</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>230</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>272</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>297</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>419</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>489</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>544</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>598</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>624</td>
<td>ASN</td>
</tr>
</tbody>
</table>
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>642</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>651</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>721</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>811</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>833</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>860</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>869</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>870</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>882</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>904</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>927</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>932</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>959</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>58</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>106</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>145</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>147</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>159</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>169</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>272</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>294</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>419</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>489</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>544</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>598</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>624</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>651</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>721</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>763</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>811</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>860</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>869</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>870</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>882</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>904</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>927</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>932</td>
<td>GLN</td>
</tr>
</tbody>
</table>

5.3.3 RNA

There are no RNA molecules in this entry.
5.4 Non-standard residues in protein, DNA, RNA chains

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates

8 carbohydrates are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the chemical component dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with $|Z| > 2$ is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

<table>
<thead>
<tr>
<th>Mol</th>
<th>Type</th>
<th>Chain</th>
<th>Res</th>
<th>Link</th>
<th>Bond lengths</th>
<th>Bond angles</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Counts</td>
<td>RMSZ</td>
</tr>
<tr>
<td>4</td>
<td>NAG</td>
<td>A</td>
<td>1071</td>
<td>1,4</td>
<td>14,14,15</td>
<td>0.67</td>
</tr>
<tr>
<td>4</td>
<td>NAG</td>
<td>A</td>
<td>1072</td>
<td>4</td>
<td>14,14,15</td>
<td>0.48</td>
</tr>
<tr>
<td>4</td>
<td>NAG</td>
<td>A</td>
<td>1073</td>
<td>1,4</td>
<td>14,14,15</td>
<td>0.61</td>
</tr>
<tr>
<td>4</td>
<td>NAG</td>
<td>A</td>
<td>1074</td>
<td>4</td>
<td>14,14,15</td>
<td>0.53</td>
</tr>
<tr>
<td>7</td>
<td>NAG</td>
<td>B</td>
<td>1077</td>
<td>1,7</td>
<td>14,14,15</td>
<td>0.46</td>
</tr>
<tr>
<td>7</td>
<td>NAG</td>
<td>B</td>
<td>1078</td>
<td>7</td>
<td>14,14,15</td>
<td>0.57</td>
</tr>
<tr>
<td>7</td>
<td>MAN</td>
<td>B</td>
<td>1079</td>
<td>11,11,12</td>
<td>0.71</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>MAN</td>
<td>B</td>
<td>1080</td>
<td>11,11,12</td>
<td>0.59</td>
<td>0</td>
</tr>
</tbody>
</table>

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the chemical component dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Type</th>
<th>Chain</th>
<th>Res</th>
<th>Link</th>
<th>Chirals</th>
<th>Torsions</th>
<th>Rings</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0/6/23/26</td>
<td>0/1/1/1</td>
</tr>
<tr>
<td>4</td>
<td>NAG</td>
<td>A</td>
<td>1071</td>
<td>1,4</td>
<td>-</td>
<td>0/6/23/26</td>
<td>0/1/1/1</td>
</tr>
<tr>
<td>4</td>
<td>NAG</td>
<td>A</td>
<td>1072</td>
<td>4</td>
<td>-</td>
<td>0/6/23/26</td>
<td>0/1/1/1</td>
</tr>
<tr>
<td>4</td>
<td>NAG</td>
<td>A</td>
<td>1073</td>
<td>1,4</td>
<td>-</td>
<td>0/6/23/26</td>
<td>0/1/1/1</td>
</tr>
<tr>
<td>4</td>
<td>NAG</td>
<td>A</td>
<td>1074</td>
<td>4</td>
<td>-</td>
<td>0/6/23/26</td>
<td>0/1/1/1</td>
</tr>
<tr>
<td>7</td>
<td>NAG</td>
<td>B</td>
<td>1077</td>
<td>1,7</td>
<td>-</td>
<td>0/6/23/26</td>
<td>0/1/1/1</td>
</tr>
<tr>
<td>7</td>
<td>NAG</td>
<td>B</td>
<td>1078</td>
<td>7</td>
<td>-</td>
<td>0/6/23/26</td>
<td>0/1/1/1</td>
</tr>
<tr>
<td>7</td>
<td>MAN</td>
<td>B</td>
<td>1079</td>
<td>11,11,12</td>
<td>0/2/19/22</td>
<td>0/1/1/1</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>MAN</td>
<td>B</td>
<td>1080</td>
<td>11,11,12</td>
<td>0/2/19/22</td>
<td>0/1/1/1</td>
<td></td>
</tr>
</tbody>
</table>

There are no bond length outliers.
All (11) bond angle outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(°)</th>
<th>Ideal(°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>B</td>
<td>1077</td>
<td>NAG</td>
<td>C4-C3-C2</td>
<td>-2.93</td>
<td>106.72</td>
<td>111.02</td>
</tr>
<tr>
<td>4</td>
<td>A</td>
<td>1071</td>
<td>NAG</td>
<td>C2-N2-C7</td>
<td>-2.63</td>
<td>119.10</td>
<td>122.94</td>
</tr>
<tr>
<td>4</td>
<td>A</td>
<td>1071</td>
<td>NAG</td>
<td>O5-C1-C2</td>
<td>-2.50</td>
<td>108.00</td>
<td>111.47</td>
</tr>
<tr>
<td>4</td>
<td>A</td>
<td>1072</td>
<td>NAG</td>
<td>C2-N2-C7</td>
<td>-2.48</td>
<td>119.33</td>
<td>122.94</td>
</tr>
<tr>
<td>7</td>
<td>B</td>
<td>1078</td>
<td>NAG</td>
<td>C6-C5-C4</td>
<td>-2.15</td>
<td>107.98</td>
<td>113.00</td>
</tr>
<tr>
<td>4</td>
<td>A</td>
<td>1071</td>
<td>NAG</td>
<td>C4-C3-C2</td>
<td>2.01</td>
<td>113.96</td>
<td>111.02</td>
</tr>
<tr>
<td>4</td>
<td>A</td>
<td>1073</td>
<td>NAG</td>
<td>O5-C1-C2</td>
<td>2.68</td>
<td>115.21</td>
<td>111.47</td>
</tr>
<tr>
<td>7</td>
<td>B</td>
<td>1077</td>
<td>NAG</td>
<td>C1-O5-C5</td>
<td>3.47</td>
<td>115.95</td>
<td>112.17</td>
</tr>
<tr>
<td>7</td>
<td>B</td>
<td>1078</td>
<td>NAG</td>
<td>C1-O5-C5</td>
<td>3.85</td>
<td>117.48</td>
<td>112.17</td>
</tr>
<tr>
<td>4</td>
<td>A</td>
<td>1072</td>
<td>NAG</td>
<td>C1-O5-C5</td>
<td>4.39</td>
<td>118.22</td>
<td>112.17</td>
</tr>
<tr>
<td>4</td>
<td>A</td>
<td>1073</td>
<td>NAG</td>
<td>C1-O5-C5</td>
<td>6.10</td>
<td>120.58</td>
<td>112.17</td>
</tr>
</tbody>
</table>

All (2) chirality outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atom</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>B</td>
<td>1080</td>
<td>MAN</td>
<td>C1</td>
</tr>
<tr>
<td>7</td>
<td>B</td>
<td>1079</td>
<td>MAN</td>
<td>C1</td>
</tr>
</tbody>
</table>

There are no torsion outliers.

There are no ring outliers.

5 monomers are involved in 6 short contacts:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Clashes</th>
<th>Symm-Clashes</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>A</td>
<td>1071</td>
<td>NAG</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>A</td>
<td>1072</td>
<td>NAG</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>A</td>
<td>1073</td>
<td>NAG</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>A</td>
<td>1074</td>
<td>NAG</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>B</td>
<td>1079</td>
<td>MAN</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

5.6 Ligand geometry

Of 9 ligands modelled in this entry, 2 are monoatomic - leaving 7 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the chemical component dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).
In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the chemical component dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Type</th>
<th>Chain</th>
<th>Res</th>
<th>Link</th>
<th>Chirals</th>
<th>Torsions</th>
<th>Rings</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>NAG</td>
<td>A</td>
<td>1075</td>
<td>1</td>
<td>0/6/23/26 0/1/1/1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>NAG</td>
<td>A</td>
<td>1076</td>
<td>1</td>
<td>0/6/23/26 0/1/1/1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>MES</td>
<td>A</td>
<td>1083</td>
<td>-</td>
<td>0/6/14/14 0/1/1/1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>LYS</td>
<td>A</td>
<td>968</td>
<td>2</td>
<td>0/5/9/9 0/0/0/0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>NAG</td>
<td>B</td>
<td>1081</td>
<td>1</td>
<td>0/6/23/26 0/1/1/1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>MES</td>
<td>B</td>
<td>1084</td>
<td>-</td>
<td>0/6/14/14 0/1/1/1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>LYS</td>
<td>B</td>
<td>968</td>
<td>2</td>
<td>0/5/9/9 0/0/0/0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

All (3) bond length outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(Å)</th>
<th>Ideal(Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>A</td>
<td>1083</td>
<td>MES</td>
<td>C8-S</td>
<td>-7.05</td>
<td>1.66</td>
<td>1.77</td>
</tr>
<tr>
<td>6</td>
<td>B</td>
<td>1084</td>
<td>MES</td>
<td>C8-S</td>
<td>-6.54</td>
<td>1.67</td>
<td>1.77</td>
</tr>
<tr>
<td>6</td>
<td>A</td>
<td>1083</td>
<td>MES</td>
<td>O2S-S</td>
<td>2.00</td>
<td>1.51</td>
<td>1.45</td>
</tr>
</tbody>
</table>

All (19) bond angle outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(°)</th>
<th>Ideal(°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>B</td>
<td>1084</td>
<td>MES</td>
<td>C6-C5-N4</td>
<td>-4.79</td>
<td>103.39</td>
<td>110.11</td>
</tr>
<tr>
<td>6</td>
<td>A</td>
<td>1083</td>
<td>MES</td>
<td>C6-C5-N4</td>
<td>-4.05</td>
<td>104.43</td>
<td>110.11</td>
</tr>
<tr>
<td>6</td>
<td>A</td>
<td>1083</td>
<td>MES</td>
<td>C2-C3-N4</td>
<td>-3.74</td>
<td>104.87</td>
<td>110.11</td>
</tr>
<tr>
<td>6</td>
<td>B</td>
<td>1084</td>
<td>MES</td>
<td>C2-C3-N4</td>
<td>-3.59</td>
<td>105.07</td>
<td>110.11</td>
</tr>
<tr>
<td>5</td>
<td>A</td>
<td>1076</td>
<td>NAG</td>
<td>C2-N2-C7</td>
<td>-3.49</td>
<td>117.85</td>
<td>122.94</td>
</tr>
<tr>
<td>6</td>
<td>B</td>
<td>1084</td>
<td>MES</td>
<td>O3S-S-O1S</td>
<td>-2.04</td>
<td>106.70</td>
<td>111.37</td>
</tr>
<tr>
<td>6</td>
<td>B</td>
<td>1084</td>
<td>MES</td>
<td>O2S-S-C8</td>
<td>2.41</td>
<td>108.86</td>
<td>106.79</td>
</tr>
<tr>
<td>5</td>
<td>A</td>
<td>1076</td>
<td>NAG</td>
<td>C1-O5-C5</td>
<td>2.86</td>
<td>116.11</td>
<td>112.17</td>
</tr>
<tr>
<td>6</td>
<td>A</td>
<td>1083</td>
<td>MES</td>
<td>O2S-S-C8</td>
<td>3.05</td>
<td>109.41</td>
<td>106.79</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(°)</th>
<th>Ideal(°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>B</td>
<td>1084</td>
<td>MES</td>
<td>O3S-S-C8</td>
<td>3.18</td>
<td>109.97</td>
<td>106.06</td>
</tr>
<tr>
<td>5</td>
<td>A</td>
<td>1076</td>
<td>NAG</td>
<td>C4-C3-C2</td>
<td>3.24</td>
<td>115.76</td>
<td>111.02</td>
</tr>
<tr>
<td>5</td>
<td>A</td>
<td>1075</td>
<td>NAG</td>
<td>C1-O5-C5</td>
<td>3.29</td>
<td>116.70</td>
<td>112.17</td>
</tr>
<tr>
<td>6</td>
<td>B</td>
<td>1084</td>
<td>MES</td>
<td>C7-N4-C3</td>
<td>3.48</td>
<td>120.17</td>
<td>111.26</td>
</tr>
<tr>
<td>6</td>
<td>A</td>
<td>1083</td>
<td>MES</td>
<td>C7-N4-C5</td>
<td>3.50</td>
<td>120.22</td>
<td>111.26</td>
</tr>
<tr>
<td>6</td>
<td>A</td>
<td>1083</td>
<td>MES</td>
<td>C7-N4-C3</td>
<td>3.50</td>
<td>120.24</td>
<td>111.26</td>
</tr>
<tr>
<td>6</td>
<td>B</td>
<td>1084</td>
<td>MES</td>
<td>O1S-S-C8</td>
<td>3.61</td>
<td>109.89</td>
<td>106.79</td>
</tr>
<tr>
<td>6</td>
<td>B</td>
<td>1084</td>
<td>MES</td>
<td>C7-N4-C5</td>
<td>3.72</td>
<td>120.79</td>
<td>111.26</td>
</tr>
<tr>
<td>6</td>
<td>B</td>
<td>1084</td>
<td>MES</td>
<td>C5-N4-C3</td>
<td>4.49</td>
<td>119.04</td>
<td>108.87</td>
</tr>
<tr>
<td>6</td>
<td>A</td>
<td>1083</td>
<td>MES</td>
<td>C5-N4-C3</td>
<td>4.71</td>
<td>119.53</td>
<td>108.87</td>
</tr>
</tbody>
</table>

There are no chirality outliers.

There are no torsion outliers.

There are no ring outliers.

5 monomers are involved in 11 short contacts:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Clashes</th>
<th>Symm-Clashes</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>A</td>
<td>1083</td>
<td>MES</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>968</td>
<td>LYS</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>B</td>
<td>1081</td>
<td>NAG</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>B</td>
<td>1084</td>
<td>MES</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>968</td>
<td>LYS</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

5.7 Other polymers

There are no such residues in this entry.

5.8 Polymer linkage issues

There are no chain breaks in this entry.
6 Fit of model and data

6.1 Protein, DNA and RNA chains

In the following table, the column labelled ‘#RSRZ > 2’ contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95th percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled ‘Q< 0.9’ lists the number of (and percentage) of residues with an average occupancy less than 0.9.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>analysed</th>
<th><RSRZ></th>
<th>#RSRZ>2</th>
<th>OWAB(Å²)</th>
<th>Q<0.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>869/967 (89%)</td>
<td>-0.26</td>
<td>9 (1%)</td>
<td>26, 61, 108, 138</td>
<td>2 (0%)</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>859/967 (88%)</td>
<td>-0.13</td>
<td>30 (3%)</td>
<td>27, 63, 111, 139</td>
<td>0</td>
</tr>
<tr>
<td>All</td>
<td>All</td>
<td>1728/1934 (89%)</td>
<td>-0.19</td>
<td>39 (2%)</td>
<td>26, 62, 109, 139</td>
<td>2 (0%)</td>
</tr>
</tbody>
</table>

All (39) RSRZ outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>RSRZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>B</td>
<td>570</td>
<td>VAL</td>
<td>4.0</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>617</td>
<td>LYS</td>
<td>4.0</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>596</td>
<td>SER</td>
<td>3.5</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>102</td>
<td>SER</td>
<td>3.5</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>638</td>
<td>HIS</td>
<td>3.2</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>102</td>
<td>SER</td>
<td>3.2</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>714</td>
<td>ASN</td>
<td>3.0</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>553</td>
<td>LYS</td>
<td>3.0</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>618</td>
<td>THR</td>
<td>2.9</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>924</td>
<td>GLN</td>
<td>2.8</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>558</td>
<td>SER</td>
<td>2.8</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>781</td>
<td>SER</td>
<td>2.8</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>155</td>
<td>LYS</td>
<td>2.7</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>923</td>
<td>ALA</td>
<td>2.6</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>613</td>
<td>ASP</td>
<td>2.6</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>61</td>
<td>ARG</td>
<td>2.6</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>927</td>
<td>HIS</td>
<td>2.6</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>653</td>
<td>LEU</td>
<td>2.5</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>779</td>
<td>GLU</td>
<td>2.4</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>926</td>
<td>SER</td>
<td>2.4</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>583</td>
<td>ARG</td>
<td>2.4</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>502</td>
<td>SER</td>
<td>2.3</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>924</td>
<td>GLN</td>
<td>2.3</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>532</td>
<td>ALA</td>
<td>2.3</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>RSRZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>560</td>
<td>ARG</td>
<td>2.3</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>776</td>
<td>GLN</td>
<td>2.2</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>728</td>
<td>GLN</td>
<td>2.2</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>135</td>
<td>LYS</td>
<td>2.2</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>530</td>
<td>GLU</td>
<td>2.2</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>554</td>
<td>GLN</td>
<td>2.1</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>615</td>
<td>PRO</td>
<td>2.1</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>108</td>
<td>ILE</td>
<td>2.1</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>597</td>
<td>SER</td>
<td>2.1</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>564</td>
<td>GLU</td>
<td>2.1</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>678</td>
<td>ASP</td>
<td>2.1</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>65</td>
<td>GLN</td>
<td>2.1</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>130</td>
<td>TYR</td>
<td>2.0</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>583</td>
<td>ARG</td>
<td>2.0</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>648</td>
<td>ASN</td>
<td>2.0</td>
</tr>
</tbody>
</table>

6.2 Non-standard residues in protein, DNA, RNA chains

There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. LLDF column lists the quality of electron density of the group with respect to its neighbouring residues in protein, DNA or RNA chains. The B-factors column lists the minimum, median, 95th percentile and maximum values of B factors of atoms in the group. The column labelled ‘Q< 0.9’ lists the number of atoms with occupancy less than 0.9.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Type</th>
<th>Chain</th>
<th>Res</th>
<th>Atoms</th>
<th>RSCC</th>
<th>RSR</th>
<th>LLDF</th>
<th>B-factors(A²)</th>
<th>Q<0.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>NAG</td>
<td>A</td>
<td>1073</td>
<td>14/15</td>
<td>0.89</td>
<td>0.33</td>
<td>4.01</td>
<td>44,63,69,71</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>NAG</td>
<td>B</td>
<td>1077</td>
<td>14/15</td>
<td>0.93</td>
<td>0.21</td>
<td>1.06</td>
<td>45,65,74,75</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>NAG</td>
<td>A</td>
<td>1071</td>
<td>14/15</td>
<td>0.94</td>
<td>0.20</td>
<td>0.64</td>
<td>43,58,70,72</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>NAG</td>
<td>A</td>
<td>1072</td>
<td>14/15</td>
<td>0.91</td>
<td>0.22</td>
<td>0.13</td>
<td>62,77,82,90</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>NAG</td>
<td>B</td>
<td>1078</td>
<td>14/15</td>
<td>0.89</td>
<td>0.23</td>
<td>-</td>
<td>57,74,91,95</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>MAN</td>
<td>B</td>
<td>1080</td>
<td>11/12</td>
<td>0.86</td>
<td>0.35</td>
<td>-</td>
<td>98,112,120,124</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>MAN</td>
<td>B</td>
<td>1079</td>
<td>11/12</td>
<td>0.82</td>
<td>0.33</td>
<td>-</td>
<td>94,102,111,115</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>NAG</td>
<td>A</td>
<td>1074</td>
<td>14/15</td>
<td>0.63</td>
<td>0.63</td>
<td>-</td>
<td>78,88,106,128</td>
<td>0</td>
</tr>
</tbody>
</table>
6.4 Ligands

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. LLDF column lists the quality of electron density of the group with respect to its neighbouring residues in protein, DNA or RNA chains. The B-factors column lists the minimum, median, 95th percentile and maximum values of B factors of atoms in the group. The column labelled ‘Q< 0.9’ lists the number of atoms with occupancy less than 0.9.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Type</th>
<th>Chain</th>
<th>Res</th>
<th>Atoms</th>
<th>RSCC</th>
<th>RSR</th>
<th>LLDF</th>
<th>B-factors(Å²)</th>
<th>Q<0.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>NAG</td>
<td>B</td>
<td>1081</td>
<td>14/15</td>
<td>0.88</td>
<td>0.37</td>
<td>5.71</td>
<td>53,72,97,99</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>NAG</td>
<td>A</td>
<td>1075</td>
<td>14/15</td>
<td>0.91</td>
<td>0.30</td>
<td>2.97</td>
<td>58,81,86,93</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>LYS</td>
<td>B</td>
<td>968</td>
<td>10/10</td>
<td>0.95</td>
<td>0.20</td>
<td>1.58</td>
<td>36,51,71,71</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>MES</td>
<td>B</td>
<td>1084</td>
<td>12/12</td>
<td>0.88</td>
<td>0.27</td>
<td>1.52</td>
<td>53,71,88,100</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>MES</td>
<td>A</td>
<td>1083</td>
<td>12/12</td>
<td>0.91</td>
<td>0.22</td>
<td>1.19</td>
<td>46,68,81,96</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>LYS</td>
<td>A</td>
<td>968</td>
<td>10/10</td>
<td>0.99</td>
<td>0.12</td>
<td>-1.41</td>
<td>32,39,51,51</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>ZN</td>
<td>A</td>
<td>5000</td>
<td>1/1</td>
<td>1.00</td>
<td>0.09</td>
<td>-2.87</td>
<td>31,31,31,31</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>ZN</td>
<td>B</td>
<td>6000</td>
<td>1/1</td>
<td>0.99</td>
<td>0.07</td>
<td>-4.66</td>
<td>36,36,36,36</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>NAG</td>
<td>A</td>
<td>1076</td>
<td>14/15</td>
<td>0.84</td>
<td>0.31</td>
<td>-</td>
<td>59,91,103,108</td>
<td>0</td>
</tr>
</tbody>
</table>

6.5 Other polymers

There are no such residues in this entry.