PDB ID : 2GO5
EMDB ID: : EMD-1217
Title : Structure of signal recognition particle receptor (SR) in complex with signal recognition particle (SRP) and ribosome nascent chain complex
Authors : Halic, M.; Gartmann, M.; Schlenker, O.; Mielke, T.; Pool, M.R.; Sinning, I.; Beckmann, R.
Deposited on : 2006-04-12
Resolution : 7.40 Å (reported)

This is a Full wwPDB/EMDataBank EM Map/Model Validation Report for a publicly released PDB/EMDB entry.

We welcome your comments at validation@mail.wwpdb.org
A user guide is available at http://wwpdb.org/validation/2016/EMValidationReportHelp with specific help available everywhere you see the symbol.

MolProbity : 4.02b-467
Percentile statistics : 20161228.v01 (using entries in the PDB archive December 28th 2016)
Ideal geometry (proteins) : Engh & Huber (2001)
Ideal geometry (DNA, RNA) : Parkinson et. al. (1996)
Validation Pipeline (wwPDB-VP) : recal29047
1 Overall quality at a glance

The following experimental techniques were used to determine the structure:

ELECTRON MICROSCOPY

The reported resolution of this entry is 7.40 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

<table>
<thead>
<tr>
<th>Metric</th>
<th>Whole archive (#Entries)</th>
<th>EM structures (#Entries)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clashescore</td>
<td>125131</td>
<td>1336</td>
</tr>
<tr>
<td>Ramachandran outliers</td>
<td>121729</td>
<td>1120</td>
</tr>
<tr>
<td>Sidechain outliers</td>
<td>121581</td>
<td>1026</td>
</tr>
<tr>
<td>RNA backbone</td>
<td>3398</td>
<td>335</td>
</tr>
</tbody>
</table>

The table below summarises the geometric issues observed across the polymeric chains. The red, orange, yellow and green segments on the bar indicate the fraction of residues that contain outliers for ≥ 3, 2, 1 and 0 types of geometric quality criteria. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions $\leq 5\%$

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Length</th>
<th>Quality of chain</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>127</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>9</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>108</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>W</td>
<td>109</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>185</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>214</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>124</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>152</td>
<td></td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Length</th>
<th>Quality of chain</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>6</td>
<td>123</td>
<td>24% 24% 9% 9% 34%</td>
</tr>
</tbody>
</table>
2 Entry composition

There are 9 unique types of molecules in this entry. The entry contains 10724 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

- Molecule 1 is a RNA chain called SRP RNA.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>AltConf</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>127</td>
<td>Total C N O P</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2728 1217 508 877 126</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Molecule 2 is a RNA chain called ribosomal RNA.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>AltConf</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>9</td>
<td>90</td>
<td>Total C N O P</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1935 863 364 618 90</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Molecule 3 is a protein called Signal recognition particle 19 kDa protein (SRP19).

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>AltConf</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>B</td>
<td>107</td>
<td>Total C N O S</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>870 549 159 156 6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Molecule 4 is a protein called Signal recognition particle 54 kDa protein (SRP54).

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>AltConf</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>W</td>
<td>109</td>
<td>Total C N O S</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>865 540 150 164 11</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Molecule 5 is a protein called Signal recognition particle receptor alpha subunit (SR a).

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>AltConf</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>1</td>
<td>125</td>
<td>Total C N O S</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1020 659 169 189 3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

There are 11 discrepancies between the modelled and reference sequences:

<table>
<thead>
<tr>
<th>Chain</th>
<th>Residue</th>
<th>Modelled</th>
<th>Actual</th>
<th>Comment</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-8</td>
<td>MET</td>
<td>-</td>
<td>CLONING ARTIFACT</td>
<td>UNP P08240</td>
</tr>
<tr>
<td>1</td>
<td>-7</td>
<td>SER</td>
<td>-</td>
<td>CLONING ARTIFACT</td>
<td>UNP P08240</td>
</tr>
<tr>
<td>1</td>
<td>-6</td>
<td>HIS</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P08240</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Chain</th>
<th>Residue</th>
<th>Modelled</th>
<th>Actual</th>
<th>Comment</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-5</td>
<td>HIS</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P08240</td>
</tr>
<tr>
<td>1</td>
<td>-4</td>
<td>HIS</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P08240</td>
</tr>
<tr>
<td>1</td>
<td>-3</td>
<td>HIS</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P08240</td>
</tr>
<tr>
<td>1</td>
<td>-2</td>
<td>HIS</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P08240</td>
</tr>
<tr>
<td>1</td>
<td>-1</td>
<td>HIS</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P08240</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>SER</td>
<td>-</td>
<td>CLONING ARTIFACT</td>
<td>UNP P08240</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>MET</td>
<td>-</td>
<td>CLONING ARTIFACT</td>
<td>UNP P08240</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>VAL</td>
<td>-</td>
<td>CLONING ARTIFACT</td>
<td>UNP P08240</td>
</tr>
</tbody>
</table>

- Molecule 6 is a protein called Signal recognition particle receptor beta subunit (SR b).

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>AltConf</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>2</td>
<td>188</td>
<td>Total C N O S</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1479 940 256 278 5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

There are 2 discrepancies between the modelled and reference sequences:

<table>
<thead>
<tr>
<th>Chain</th>
<th>Residue</th>
<th>Modelled</th>
<th>Actual</th>
<th>Comment</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>56</td>
<td>MET</td>
<td>-</td>
<td>INITIATING METHIONINE</td>
<td>UNP P47758</td>
</tr>
<tr>
<td>2</td>
<td>57</td>
<td>ALA</td>
<td>-</td>
<td>CLONING ARTIFACT</td>
<td>UNP P47758</td>
</tr>
</tbody>
</table>

- Molecule 7 is a protein called ribosomal protein L35.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>AltConf</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>5</td>
<td>64</td>
<td>Total C N O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>504 314 99 91</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Molecule 8 is a protein called ribosomal protein L23.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>AltConf</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>4</td>
<td>81</td>
<td>Total C N O S</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>652 423 108 119 2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Molecule 9 is a protein called ribosomal protein L31.
3 Residue-property plots

These plots are drawn for all protein, RNA and DNA chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: SRP RNA

Chain A:

• Molecule 2: ribosomal RNA

Chain 9:

• Molecule 3: Signal recognition particle 19 kDa protein (SRP19)

Chain B:

• Molecule 4: Signal recognition particle 54 kDa protein (SRP54)

Chain W:

• Molecule 5: Signal recognition particle receptor alpha subunit (SR a)

Chain 1:
- Molecule 6: Signal recognition particle receptor beta subunit (SR b)

Chain 2:

- Molecule 7: ribosomal protein L35

Chain 5:

- Molecule 8: ribosomal protein L23

Chain 4:

- Molecule 9: ribosomal protein L31

Chain 6:
4 Experimental information

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reconstruction method</td>
<td>SINGLE PARTICLE</td>
<td>Depositor</td>
</tr>
<tr>
<td>Imposed symmetry</td>
<td>POINT, Not provided</td>
<td>Depositor</td>
</tr>
<tr>
<td>Number of particles used</td>
<td>Not provided</td>
<td>Depositor</td>
</tr>
<tr>
<td>Resolution determination method</td>
<td>Not provided</td>
<td>Depositor</td>
</tr>
<tr>
<td>CTF correction method</td>
<td>Not provided</td>
<td>Depositor</td>
</tr>
<tr>
<td>Microscope</td>
<td>FEI TECNAI F30</td>
<td>Depositor</td>
</tr>
<tr>
<td>Voltage (kV)</td>
<td>300</td>
<td>Depositor</td>
</tr>
<tr>
<td>Electron dose ($e^-/Å^2$)</td>
<td>Not provided</td>
<td>Depositor</td>
</tr>
<tr>
<td>Minimum defocus (nm)</td>
<td>800</td>
<td>Depositor</td>
</tr>
<tr>
<td>Maximum defocus (nm)</td>
<td>3500</td>
<td>Depositor</td>
</tr>
<tr>
<td>Magnification</td>
<td>Not provided</td>
<td>Depositor</td>
</tr>
<tr>
<td>Image detector</td>
<td>KODAK SO163 FILM</td>
<td>Depositor</td>
</tr>
</tbody>
</table>
5 Model quality

5.1 Standard geometry

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with \(|Z| > 5\) is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Bond lengths</th>
<th>Bond angles</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>RMSZ</td>
<td>#</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>0.45</td>
<td>0/3053</td>
</tr>
<tr>
<td>2</td>
<td>9</td>
<td>0.42</td>
<td>0/2167</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>0.46</td>
<td>0/884</td>
</tr>
<tr>
<td>4</td>
<td>W</td>
<td>0.95</td>
<td>2/876 (0.2%)</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0.60</td>
<td>0/1035</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>0.53</td>
<td>0/1496</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>1.48</td>
<td>4/506 (0.8%)</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>1.43</td>
<td>10/660 (1.5%)</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>1.35</td>
<td>3/680 (0.4%)</td>
</tr>
<tr>
<td>All</td>
<td>All</td>
<td>0.76</td>
<td>19/11357 (0.2%)</td>
</tr>
</tbody>
</table>

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>#Chirality outliers</th>
<th>#Planarity outliers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>9</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>W</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>0</td>
<td>11</td>
</tr>
<tr>
<td>All</td>
<td>All</td>
<td>5</td>
<td>30</td>
</tr>
</tbody>
</table>

All (19) bond length outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(Å)</th>
<th>Ideal(Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>W</td>
<td>345</td>
<td>PHE</td>
<td>C-N</td>
<td>-18.40</td>
<td>0.91</td>
<td>1.34</td>
</tr>
<tr>
<td>4</td>
<td>W</td>
<td>362</td>
<td>LYS</td>
<td>C-N</td>
<td>17.62</td>
<td>1.64</td>
<td>1.33</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>38</td>
<td>VAL</td>
<td>C-N</td>
<td>11.88</td>
<td>1.61</td>
<td>1.34</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>39</td>
<td>ALA</td>
<td>N-CA</td>
<td>-11.08</td>
<td>1.24</td>
<td>1.46</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>38</td>
<td>VAL</td>
<td>CA-C</td>
<td>10.76</td>
<td>1.80</td>
<td>1.52</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(Å)</th>
<th>Ideal(Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>4</td>
<td>97</td>
<td>ASP</td>
<td>N-CA</td>
<td>-9.12</td>
<td>1.28</td>
<td>1.46</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>125</td>
<td>ARG</td>
<td>CZ-NH2</td>
<td>9.02</td>
<td>1.44</td>
<td>1.33</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>131</td>
<td>LYS</td>
<td>CD-CE</td>
<td>8.06</td>
<td>1.71</td>
<td>1.51</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>140</td>
<td>TYR</td>
<td>CE2-CZ</td>
<td>-7.89</td>
<td>1.28</td>
<td>1.38</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>135</td>
<td>LYS</td>
<td>CD-CE</td>
<td>6.86</td>
<td>1.68</td>
<td>1.51</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>34</td>
<td>ARG</td>
<td>CB-CG</td>
<td>6.08</td>
<td>1.64</td>
<td>1.51</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>131</td>
<td>LYS</td>
<td>CE-NZ</td>
<td>6.01</td>
<td>1.40</td>
<td>1.33</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>85</td>
<td>ARG</td>
<td>CZ-NH1</td>
<td>5.62</td>
<td>1.40</td>
<td>1.33</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>135</td>
<td>LYS</td>
<td>CE-NZ</td>
<td>5.59</td>
<td>1.63</td>
<td>1.49</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>96</td>
<td>VAL</td>
<td>C-N</td>
<td>5.58</td>
<td>1.46</td>
<td>1.34</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>58</td>
<td>ARG</td>
<td>CZ-NH2</td>
<td>5.40</td>
<td>1.40</td>
<td>1.33</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>27</td>
<td>ARG</td>
<td>CZ-NH1</td>
<td>5.36</td>
<td>1.40</td>
<td>1.33</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>125</td>
<td>ARG</td>
<td>CD-NE</td>
<td>-5.31</td>
<td>1.37</td>
<td>1.46</td>
</tr>
</tbody>
</table>

All (104) bond angle outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(°)</th>
<th>Ideal(°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>4</td>
<td>125</td>
<td>ARG</td>
<td>NE-CZ-NH2</td>
<td>-72.81</td>
<td>83.89</td>
<td>120.30</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>39</td>
<td>ALA</td>
<td>N-CA-CB</td>
<td>-42.85</td>
<td>50.11</td>
<td>110.10</td>
</tr>
<tr>
<td>4</td>
<td>W</td>
<td>362</td>
<td>LYS</td>
<td>C-N-CA</td>
<td>-28.46</td>
<td>62.54</td>
<td>122.30</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>125</td>
<td>ARG</td>
<td>NE-CZ-NH1</td>
<td>20.51</td>
<td>130.55</td>
<td>120.30</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>34</td>
<td>ARG</td>
<td>NE-CZ-NH1</td>
<td>-20.27</td>
<td>110.16</td>
<td>120.30</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>97</td>
<td>ASP</td>
<td>CB-CG-OD1</td>
<td>17.33</td>
<td>133.90</td>
<td>118.30</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>39</td>
<td>ALA</td>
<td>N-CA-C</td>
<td>-15.52</td>
<td>69.10</td>
<td>111.00</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>18</td>
<td>ARG</td>
<td>NE-CZ-NH2</td>
<td>-14.67</td>
<td>112.96</td>
<td>120.30</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>38</td>
<td>VAL</td>
<td>CA-C-O</td>
<td>-14.15</td>
<td>90.39</td>
<td>120.10</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>43</td>
<td>SER</td>
<td>N-CA-CB</td>
<td>-13.21</td>
<td>90.69</td>
<td>110.50</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>38</td>
<td>VAL</td>
<td>CA-C-N</td>
<td>12.98</td>
<td>145.76</td>
<td>117.20</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>18</td>
<td>ARG</td>
<td>NE-CZ-NH1</td>
<td>12.94</td>
<td>126.77</td>
<td>120.30</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>97</td>
<td>ASP</td>
<td>CB-CG-OD2</td>
<td>-12.52</td>
<td>107.03</td>
<td>118.30</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>125</td>
<td>ARG</td>
<td>NH1-CZ-NH2</td>
<td>12.50</td>
<td>133.15</td>
<td>119.40</td>
</tr>
<tr>
<td>4</td>
<td>W</td>
<td>362</td>
<td>LYS</td>
<td>O-C-N</td>
<td>11.68</td>
<td>143.05</td>
<td>123.20</td>
</tr>
<tr>
<td>4</td>
<td>W</td>
<td>345</td>
<td>PHE</td>
<td>C-N-CA</td>
<td>11.67</td>
<td>150.86</td>
<td>121.70</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>97</td>
<td>ASP</td>
<td>CB-CA-C</td>
<td>11.60</td>
<td>133.60</td>
<td>110.40</td>
</tr>
<tr>
<td>4</td>
<td>W</td>
<td>361</td>
<td>SER</td>
<td>CA-C-N</td>
<td>-11.56</td>
<td>91.77</td>
<td>117.20</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>90</td>
<td>ASN</td>
<td>CB-CG-OD1</td>
<td>-11.35</td>
<td>98.89</td>
<td>121.60</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>96</td>
<td>VAL</td>
<td>C-N-CA</td>
<td>-11.31</td>
<td>93.41</td>
<td>121.70</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>141</td>
<td>ASP</td>
<td>C-N-CA</td>
<td>11.16</td>
<td>149.60</td>
<td>121.70</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>43</td>
<td>SER</td>
<td>N-CA-C</td>
<td>10.90</td>
<td>140.44</td>
<td>111.00</td>
</tr>
<tr>
<td>4</td>
<td>W</td>
<td>362</td>
<td>LYS</td>
<td>CA-C-N</td>
<td>-10.52</td>
<td>95.15</td>
<td>116.20</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>52</td>
<td>MET</td>
<td>CG-SD-CE</td>
<td>-10.06</td>
<td>84.10</td>
<td>100.20</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(°)</th>
<th>Ideal(°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>5</td>
<td>43</td>
<td>SER</td>
<td>C-N-CA</td>
<td>9.85</td>
<td>146.31</td>
<td>121.70</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>131</td>
<td>LYS</td>
<td>CD-CE-NZ</td>
<td>9.66</td>
<td>133.93</td>
<td>111.70</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>17</td>
<td>ASP</td>
<td>CB-CG-OD2</td>
<td>9.59</td>
<td>126.94</td>
<td>118.30</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>142</td>
<td>ALA</td>
<td>CB-CA-C</td>
<td>-9.59</td>
<td>95.72</td>
<td>110.10</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>101</td>
<td>ASP</td>
<td>C-N-CA</td>
<td>9.47</td>
<td>145.37</td>
<td>121.70</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>115</td>
<td>ILE</td>
<td>CA-CB-CG1</td>
<td>9.31</td>
<td>128.69</td>
<td>111.00</td>
</tr>
<tr>
<td>4</td>
<td>W</td>
<td>361</td>
<td>SER</td>
<td>O-C-N</td>
<td>9.18</td>
<td>137.39</td>
<td>122.70</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>57</td>
<td>ARG</td>
<td>NE-CZ-NH1</td>
<td>-8.93</td>
<td>115.83</td>
<td>120.30</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>101</td>
<td>ASP</td>
<td>N-CA-C</td>
<td>8.87</td>
<td>134.96</td>
<td>111.00</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>38</td>
<td>VAL</td>
<td>CB-CA-C</td>
<td>8.61</td>
<td>127.77</td>
<td>111.40</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>145</td>
<td>VAL</td>
<td>N-CA-C</td>
<td>8.34</td>
<td>133.52</td>
<td>111.00</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>115</td>
<td>ILE</td>
<td>CA-CB-CG2</td>
<td>-8.20</td>
<td>94.51</td>
<td>110.90</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>140</td>
<td>TYR</td>
<td>CG-CD1-CE1</td>
<td>-8.19</td>
<td>114.75</td>
<td>121.30</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>135</td>
<td>LYS</td>
<td>CA-CB-CG</td>
<td>8.11</td>
<td>131.25</td>
<td>113.40</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>44</td>
<td>LYS</td>
<td>N-CA-CB</td>
<td>8.05</td>
<td>125.09</td>
<td>110.60</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>58</td>
<td>ARG</td>
<td>NE-CZ-NH2</td>
<td>-8.02</td>
<td>116.29</td>
<td>120.30</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>131</td>
<td>LYS</td>
<td>CG-CD-CE</td>
<td>8.00</td>
<td>135.88</td>
<td>111.90</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>90</td>
<td>GLU</td>
<td>CA-CB-CG</td>
<td>7.87</td>
<td>130.72</td>
<td>113.40</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>90</td>
<td>ASN</td>
<td>CB-CG-ND2</td>
<td>7.87</td>
<td>135.58</td>
<td>116.70</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>38</td>
<td>VAL</td>
<td>CB-CA-C</td>
<td>7.79</td>
<td>126.20</td>
<td>111.40</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>96</td>
<td>VAL</td>
<td>CG1-CB-CG2</td>
<td>-7.74</td>
<td>98.52</td>
<td>110.90</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>39</td>
<td>ALA</td>
<td>CA-C-N</td>
<td>7.68</td>
<td>134.10</td>
<td>117.20</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>39</td>
<td>ALA</td>
<td>O-C-N</td>
<td>-7.55</td>
<td>110.61</td>
<td>122.70</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>28</td>
<td>LEU</td>
<td>CB-CA-C</td>
<td>-7.42</td>
<td>96.11</td>
<td>110.20</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>135</td>
<td>LYS</td>
<td>CD-CE-NZ</td>
<td>7.33</td>
<td>128.56</td>
<td>111.70</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>101</td>
<td>ASP</td>
<td>CA-C-N</td>
<td>-7.29</td>
<td>101.17</td>
<td>117.20</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>135</td>
<td>LYS</td>
<td>CB-CG-CG</td>
<td>7.22</td>
<td>130.37</td>
<td>111.60</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>43</td>
<td>SER</td>
<td>O-C-N</td>
<td>7.10</td>
<td>134.06</td>
<td>122.70</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>101</td>
<td>ASP</td>
<td>CB-CG-OD2</td>
<td>-7.07</td>
<td>111.94</td>
<td>118.30</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>119</td>
<td>LYS</td>
<td>CD-CE-NZ</td>
<td>7.07</td>
<td>127.95</td>
<td>111.70</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>52</td>
<td>MET</td>
<td>CA-CB-CG</td>
<td>7.03</td>
<td>125.24</td>
<td>113.30</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>85</td>
<td>ARG</td>
<td>CB-CA-C</td>
<td>-7.02</td>
<td>96.36</td>
<td>110.40</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>34</td>
<td>ARG</td>
<td>NH1-CZ-NH2</td>
<td>6.94</td>
<td>127.03</td>
<td>119.40</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>85</td>
<td>ARG</td>
<td>N-CA-CB</td>
<td>6.89</td>
<td>123.01</td>
<td>110.60</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>38</td>
<td>VAL</td>
<td>CA-CB-CG2</td>
<td>6.85</td>
<td>121.18</td>
<td>110.90</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>23</td>
<td>ASN</td>
<td>N-CA-C</td>
<td>-6.84</td>
<td>92.54</td>
<td>111.00</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>27</td>
<td>ARG</td>
<td>NE-CZ-NH1</td>
<td>-6.80</td>
<td>116.90</td>
<td>120.30</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>85</td>
<td>ARG</td>
<td>NE-CZ-NH1</td>
<td>-6.71</td>
<td>116.95</td>
<td>120.30</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>96</td>
<td>VAL</td>
<td>CA-C-O</td>
<td>-6.67</td>
<td>106.10</td>
<td>120.10</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>141</td>
<td>ASP</td>
<td>N-CA-C</td>
<td>6.58</td>
<td>128.75</td>
<td>111.00</td>
</tr>
</tbody>
</table>

Continued on next page...
All (5) chirality outliers are listed below:

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atom</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>5</td>
<td>38</td>
<td>VAL</td>
<td>CA</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>39</td>
<td>ALA</td>
<td>CA</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>97</td>
<td>ASP</td>
<td>CA</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>125</td>
<td>ARG</td>
<td>CA</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>141</td>
<td>ASP</td>
<td>CA</td>
</tr>
</tbody>
</table>

All (30) planarity outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>4</td>
<td>101</td>
<td>ASP</td>
<td>Mainchain,Peptide</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>124</td>
<td>ILE</td>
<td>Peptide</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>125</td>
<td>ARG</td>
<td>Sidechain</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>140</td>
<td>TYR</td>
<td>Sidechain</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>141</td>
<td>ASP</td>
<td>Peptide</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>89</td>
<td>ASN</td>
<td>Peptide</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>38</td>
<td>VAL</td>
<td>Peptide</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>43</td>
<td>SER</td>
<td>Peptide</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>18</td>
<td>ARG</td>
<td>Sidechain</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>27</td>
<td>ARG</td>
<td>Sidechain</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>47</td>
<td>PHE</td>
<td>Sidechain</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>50</td>
<td>LYS</td>
<td>Peptide</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>51</td>
<td>ALA</td>
<td>Peptide</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>58</td>
<td>ARG</td>
<td>Sidechain</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>77</td>
<td>ARG</td>
<td>Sidechain</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>80</td>
<td>ARG</td>
<td>Sidechain</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>86</td>
<td>LYS</td>
<td>Peptide</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>87</td>
<td>ARG</td>
<td>Sidechain,Peptide</td>
</tr>
<tr>
<td>2</td>
<td>9</td>
<td>2842</td>
<td>G</td>
<td>Sidechain</td>
</tr>
<tr>
<td>2</td>
<td>9</td>
<td>2866</td>
<td>U</td>
<td>Sidechain</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>197</td>
<td>G</td>
<td>Sidechain</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>201</td>
<td>A</td>
<td>Sidechain</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>208</td>
<td>A</td>
<td>Sidechain</td>
</tr>
<tr>
<td>4</td>
<td>W</td>
<td>344</td>
<td>PRO</td>
<td>Mainchain,Peptide</td>
</tr>
<tr>
<td>4</td>
<td>W</td>
<td>361</td>
<td>SER</td>
<td>Mainchain,Peptide</td>
</tr>
<tr>
<td>4</td>
<td>W</td>
<td>362</td>
<td>LYS</td>
<td>Peptide</td>
</tr>
</tbody>
</table>

5.2 Too-close contacts

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen
atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry related clashes.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Non-H</th>
<th>H(model)</th>
<th>H(added)</th>
<th>Clashes</th>
<th>Symm-Clashes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>2728</td>
<td>0</td>
<td>1366</td>
<td>186</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>9</td>
<td>1935</td>
<td>0</td>
<td>977</td>
<td>103</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>870</td>
<td>0</td>
<td>901</td>
<td>79</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>W</td>
<td>865</td>
<td>0</td>
<td>871</td>
<td>34</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>1020</td>
<td>0</td>
<td>1019</td>
<td>53</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>1479</td>
<td>0</td>
<td>1533</td>
<td>31</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>504</td>
<td>0</td>
<td>553</td>
<td>58</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>652</td>
<td>0</td>
<td>708</td>
<td>85</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>671</td>
<td>0</td>
<td>705</td>
<td>90</td>
<td>0</td>
</tr>
<tr>
<td>All</td>
<td>All</td>
<td>10724</td>
<td>0</td>
<td>8633</td>
<td>627</td>
<td>0</td>
</tr>
</tbody>
</table>

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 33.

All (627) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:5:38:VAL:C</td>
<td>7:5:38:VAL:HA</td>
<td>1.20</td>
<td>1.49</td>
</tr>
<tr>
<td>7:5:38:VAL:C</td>
<td>7:5:38:VAL:CA</td>
<td>1.80</td>
<td>1.47</td>
</tr>
<tr>
<td>1:A:127:A:C1'</td>
<td>1:A:224:G:N2</td>
<td>1.72</td>
<td>1.41</td>
</tr>
<tr>
<td>1:A:173:A:H1'</td>
<td>1:A:224:G:C4'</td>
<td>0.94</td>
<td>1.39</td>
</tr>
<tr>
<td>5:1:0:SER:C</td>
<td>5:1:29:VAL:HG23</td>
<td>1.10</td>
<td>1.38</td>
</tr>
<tr>
<td>1:A:172:A:N6</td>
<td>1:A:225:C:O4'</td>
<td>1.64</td>
<td>1.29</td>
</tr>
<tr>
<td>1:A:172:A:C5</td>
<td>1:A:224:G:O2'</td>
<td>1.74</td>
<td>1.27</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5:1:0:SER:C</td>
<td>5:1:29:VAL:CG2</td>
<td>2.04</td>
<td>1.25</td>
</tr>
<tr>
<td>7:5:34:ARG:O</td>
<td>8:4:75:TYR:CD1</td>
<td>1.94</td>
<td>1.21</td>
</tr>
<tr>
<td>5:1:-1:HIS:HB2</td>
<td>5:1:4:PHE:CD2</td>
<td>1.79</td>
<td>1.16</td>
</tr>
<tr>
<td>5:1:-1:HIS:HB3</td>
<td>5:1:4:PHE:CD2</td>
<td>1.73</td>
<td>1.07</td>
</tr>
<tr>
<td>7:5:34:ARG:O</td>
<td>8:4:75:TYR:CE1</td>
<td>2.08</td>
<td>1.05</td>
</tr>
<tr>
<td>1:A:125:G:O2'</td>
<td>1:A:227:G:C8</td>
<td>2.08</td>
<td>1.05</td>
</tr>
<tr>
<td>1:A:127:A:N9</td>
<td>1:A:225:C:N3</td>
<td>2.05</td>
<td>1.04</td>
</tr>
<tr>
<td>7:5:38:VAL:O</td>
<td>7:5:38:VAL:HA</td>
<td>1.56</td>
<td>1.03</td>
</tr>
<tr>
<td>1:A:234:A:OP2</td>
<td>5:1:49:HIS:CA</td>
<td>2.08</td>
<td>1.02</td>
</tr>
<tr>
<td>1:A:172:A:H61</td>
<td>1:A:225:C:C1'</td>
<td>1.73</td>
<td>1.01</td>
</tr>
<tr>
<td>5:1:0:SER:O</td>
<td>5:1:29:VAL:HG23</td>
<td>1.59</td>
<td>1.01</td>
</tr>
<tr>
<td>1:A:125:G:O2'</td>
<td>1:A:227:G:N9</td>
<td>1.56</td>
<td>1.01</td>
</tr>
<tr>
<td>7:5:38:VAL:CG2</td>
<td>8:4:76:PRO:O</td>
<td>2.10</td>
<td>1.00</td>
</tr>
<tr>
<td>1:A:126:C:O2'</td>
<td>1:A:226:U:O4'</td>
<td>1.63</td>
<td>0.99</td>
</tr>
<tr>
<td>5:1:-1:HIS:HB2</td>
<td>5:1:4:PHE:HD2</td>
<td>1.09</td>
<td>0.98</td>
</tr>
<tr>
<td>8:4:136:LEU:HD13</td>
<td>8:4:140:TYR:CE2</td>
<td>1.98</td>
<td>0.97</td>
</tr>
<tr>
<td>5:1:-1:HIS:CB</td>
<td>5:1:4:PHE:HD2</td>
<td>1.49</td>
<td>0.97</td>
</tr>
</tbody>
</table>
Interatomic distances and clash overlap

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:A:220:C:H2'</td>
<td>1:A:221:C:H5''</td>
<td>1.45</td>
<td>0.96</td>
</tr>
<tr>
<td>7;5:34:ARG:HH12</td>
<td>7;5:48:ILE:HG23</td>
<td>1.29</td>
<td>0.95</td>
</tr>
<tr>
<td>5;1:-1:HIS:HB3</td>
<td>5;1:4:PHE:CE2</td>
<td>2.01</td>
<td>0.95</td>
</tr>
<tr>
<td>8;4:119:LYS:HD3</td>
<td>8;4:135:LYS:HZ3</td>
<td>1.30</td>
<td>0.95</td>
</tr>
<tr>
<td>1:A:172:A:C6</td>
<td>1:A:225:C:O4'</td>
<td>1.96</td>
<td>0.95</td>
</tr>
<tr>
<td>7;5:38:VAL:C</td>
<td>8:4:75:TYR:OH</td>
<td>2.04</td>
<td>0.95</td>
</tr>
<tr>
<td>3;B:60:VAL:HG23</td>
<td>3:B:83:ARG:O</td>
<td>1.67</td>
<td>0.94</td>
</tr>
<tr>
<td>1:A:172:A:C6</td>
<td>1:A:224:G:H2'</td>
<td>2.02</td>
<td>0.92</td>
</tr>
<tr>
<td>5;1:0:SER:CA</td>
<td>5;1:54:LEU:HD21</td>
<td>2.00</td>
<td>0.92</td>
</tr>
<tr>
<td>1:A:173:A:H1'</td>
<td>1:A:224:G:H4'</td>
<td>0.93</td>
<td>0.91</td>
</tr>
<tr>
<td>2;9:2906:A:P</td>
<td>9;6:50:LYS:HG2</td>
<td>2.11</td>
<td>0.91</td>
</tr>
<tr>
<td>2;9:2856:A:HO2'</td>
<td>9;6:21:THR:HG1</td>
<td>1.19</td>
<td>0.91</td>
</tr>
<tr>
<td>1:A:127:A:C3'</td>
<td>1:A:224:G:H21</td>
<td>1.66</td>
<td>0.90</td>
</tr>
<tr>
<td>1:A:126:C:O2</td>
<td>1:A:226:U:C6</td>
<td>2.24</td>
<td>0.90</td>
</tr>
<tr>
<td>2;9:2904:U:H5''</td>
<td>9;6:20:TYR:CE2</td>
<td>2.06</td>
<td>0.90</td>
</tr>
<tr>
<td>1:A:127:A:C8</td>
<td>1:A:225:C:N3</td>
<td>2.40</td>
<td>0.90</td>
</tr>
<tr>
<td>2;9:2905:A:O3'</td>
<td>9;6:50:LYS:HG2</td>
<td>1.71</td>
<td>0.89</td>
</tr>
<tr>
<td>1:A:221:C:N4</td>
<td>1:A:222:G:O6</td>
<td>2.05</td>
<td>0.89</td>
</tr>
<tr>
<td>3;B:64:LYS:HD3</td>
<td>3:B:64:LYS:N</td>
<td>1.88</td>
<td>0.89</td>
</tr>
<tr>
<td>5;1:0:SER:HA</td>
<td>5;1:54:LEU:HD21</td>
<td>1.56</td>
<td>0.88</td>
</tr>
<tr>
<td>1:A:172:A:N7</td>
<td>1:A:224:G:O2'</td>
<td>2.06</td>
<td>0.88</td>
</tr>
<tr>
<td>6;2:204:VAL:HG12</td>
<td>9;6:18:ARG:CD</td>
<td>2.04</td>
<td>0.88</td>
</tr>
<tr>
<td>1:A:126:C:C2</td>
<td>1:A:226:U:N1</td>
<td>2.17</td>
<td>0.88</td>
</tr>
<tr>
<td>7;5:38:VAL:O</td>
<td>7;5:38:VAL:CA</td>
<td>2.18</td>
<td>0.87</td>
</tr>
<tr>
<td>1:A:124:G:C6</td>
<td>1:A:126:C:C5</td>
<td>2.62</td>
<td>0.87</td>
</tr>
<tr>
<td>2;9:2890:A:H5''</td>
<td>2;9:2890:A:H8</td>
<td>1.37</td>
<td>0.87</td>
</tr>
<tr>
<td>5;1:-1:HIS:ND1</td>
<td>5;1:68:VAL:O</td>
<td>2.06</td>
<td>0.87</td>
</tr>
<tr>
<td>1:A:127:A:C2'</td>
<td>1:A:224:G:N2</td>
<td>0.72</td>
<td>0.87</td>
</tr>
<tr>
<td>3;B:94:CYS:O</td>
<td>3:B:95:LEU:HD23</td>
<td>1.74</td>
<td>0.86</td>
</tr>
<tr>
<td>8;4:122:THR:HG23</td>
<td>8;4:130:LYS:HD3</td>
<td>1.56</td>
<td>0.86</td>
</tr>
<tr>
<td>1:A:173:A:C1'</td>
<td>1:A:224:G:O4'</td>
<td>2.05</td>
<td>0.86</td>
</tr>
<tr>
<td>5;1:0:SER:HB2</td>
<td>5;1:29:VAL:N</td>
<td>1.58</td>
<td>0.85</td>
</tr>
<tr>
<td>1:A:126:C:O2'</td>
<td>1:A:226:U:C4'</td>
<td>2.24</td>
<td>0.85</td>
</tr>
<tr>
<td>2;9:2906:A:OP1</td>
<td>9;6:50:LYS:HG2</td>
<td>1.77</td>
<td>0.84</td>
</tr>
<tr>
<td>1:A:184:A:N3</td>
<td>4;W:405:ARG:NH1</td>
<td>2.24</td>
<td>0.84</td>
</tr>
<tr>
<td>1:A:127:A:C2'</td>
<td>1:A:224:G:H21</td>
<td>0.59</td>
<td>0.84</td>
</tr>
<tr>
<td>1:A:126:C:O2</td>
<td>1:A:226:U:N1</td>
<td>2.08</td>
<td>0.84</td>
</tr>
<tr>
<td>1:A:173:A:C1'</td>
<td>1:A:224:G:C5'</td>
<td>2.39</td>
<td>0.83</td>
</tr>
<tr>
<td>Atom-1</td>
<td>Atom-2</td>
<td>Interatomic distance (Å)</td>
<td>Clash overlap (Å)</td>
</tr>
<tr>
<td>--------</td>
<td>--------</td>
<td>--------------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>7:5:27:LYS:HE3</td>
<td>7:5:27:LYS:O</td>
<td>1.80</td>
<td>0.82</td>
</tr>
<tr>
<td>1:A:127:A:O2'</td>
<td>1:A:224:G:N2</td>
<td>1.94</td>
<td>0.82</td>
</tr>
<tr>
<td>4:W:361:SER:O</td>
<td>4:W:362:LYS:CG</td>
<td>2.27</td>
<td>0.82</td>
</tr>
<tr>
<td>3:B:14:ARG:NH1</td>
<td>3:B:14:ARG:HB3</td>
<td>1.96</td>
<td>0.81</td>
</tr>
<tr>
<td>3:B:24:ASN:HD22</td>
<td>3:B:27:LYS:HG3</td>
<td>1.42</td>
<td>0.81</td>
</tr>
<tr>
<td>8:4:136:LEU:HD13</td>
<td>8:4:140:TYR:HE2</td>
<td>1.43</td>
<td>0.81</td>
</tr>
<tr>
<td>7:5:12:TRP:HE1</td>
<td>7:5:61:VAL:HG22</td>
<td>1.45</td>
<td>0.81</td>
</tr>
<tr>
<td>7:5:35:ILE:HA</td>
<td>8:4:75:TYR:HE1</td>
<td>1.46</td>
<td>0.80</td>
</tr>
<tr>
<td>2:9:2854:A:C2'</td>
<td>9:6:26:LYS:HE3</td>
<td>2.10</td>
<td>0.80</td>
</tr>
<tr>
<td>6:2:204:VAL:HG12</td>
<td>9:6:18:ARG:HD2</td>
<td>1.63</td>
<td>0.79</td>
</tr>
<tr>
<td>7:5:38:VAL:HG23</td>
<td>8:4:76:PRO:O</td>
<td>1.81</td>
<td>0.79</td>
</tr>
<tr>
<td>1:A:128:U:H5"</td>
<td>1:A:224:G:N2</td>
<td>1.96</td>
<td>0.79</td>
</tr>
<tr>
<td>8:4:115:ILE:HG21</td>
<td>8:4:140:TYR:OH</td>
<td>1.81</td>
<td>0.79</td>
</tr>
<tr>
<td>4:W:344:PRO:C</td>
<td>4:W:346:SER:N</td>
<td>2.34</td>
<td>0.79</td>
</tr>
<tr>
<td>1:A:173:A:C1'</td>
<td>1:A:224:G:H5"</td>
<td>2.09</td>
<td>0.78</td>
</tr>
<tr>
<td>5:1:0:SER:CB</td>
<td>5:1:29:VAL:N</td>
<td>2.31</td>
<td>0.78</td>
</tr>
<tr>
<td>1:A:125:G:O2'</td>
<td>1:A:227:G:H1'</td>
<td>1.82</td>
<td>0.78</td>
</tr>
<tr>
<td>1:A:124:G:N1</td>
<td>1:A:126:C:C5</td>
<td>2.52</td>
<td>0.78</td>
</tr>
<tr>
<td>1:A:220:C:C2'</td>
<td>1:A:221:C:H5"</td>
<td>2.14</td>
<td>0.78</td>
</tr>
<tr>
<td>8:4:136:LEU:HD13</td>
<td>8:4:140:TYR:CD2</td>
<td>2.18</td>
<td>0.78</td>
</tr>
<tr>
<td>4:W:344:PRO:O</td>
<td>4:W:346:SER:N</td>
<td>2.18</td>
<td>0.76</td>
</tr>
<tr>
<td>2:9:2904:U:C5'</td>
<td>9:6:20:TYR:CE2</td>
<td>2.69</td>
<td>0.76</td>
</tr>
<tr>
<td>7:5:35:ILE:HA</td>
<td>8:4:75:TYR:CE1</td>
<td>2.20</td>
<td>0.76</td>
</tr>
<tr>
<td>7:5:54:SER:HA</td>
<td>7:5:57:ARG:HE</td>
<td>1.51</td>
<td>0.76</td>
</tr>
<tr>
<td>1:A:175:G:H3'</td>
<td>1:A:176:A:H5"</td>
<td>1.68</td>
<td>0.75</td>
</tr>
<tr>
<td>8:4:115:ILE:HG21</td>
<td>8:4:140:TYR:HZ</td>
<td>2.21</td>
<td>0.75</td>
</tr>
<tr>
<td>1:A:127:A:C1'</td>
<td>1:A:225:C:N3</td>
<td>2.29</td>
<td>0.75</td>
</tr>
<tr>
<td>3:B:14:ARG:HB3</td>
<td>3:B:14:ARG:HZ</td>
<td>2.17</td>
<td>0.75</td>
</tr>
<tr>
<td>8:4:119:LYS:HD3</td>
<td>8:4:135:LYS:NZ</td>
<td>2.02</td>
<td>0.75</td>
</tr>
<tr>
<td>8:4:140:TYR:CE2</td>
<td>8:4:145:VAL:HG21</td>
<td>2.22</td>
<td>0.75</td>
</tr>
<tr>
<td>2:9:2878:U:H2'</td>
<td>2:9:2879:A:O4'</td>
<td>1.86</td>
<td>0.75</td>
</tr>
<tr>
<td>2:9:2904:U:C4'</td>
<td>9:6:20:TYR:CE2</td>
<td>2.66</td>
<td>0.75</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:5:38:VAL:HG21</td>
<td>8:4:76:PRO:O</td>
<td>1.86</td>
<td>0.74</td>
</tr>
<tr>
<td>7:5:16:LYS:HG3</td>
<td>7:5:67:ARG:C</td>
<td>2.08</td>
<td>0.74</td>
</tr>
<tr>
<td>8:4:105:ILE:HD11</td>
<td>8:4:130:LYS:HE3</td>
<td>1.70</td>
<td>0.74</td>
</tr>
<tr>
<td>8:4:115:ILE:HG22</td>
<td>8:4:140:TYR:CE1</td>
<td>2.23</td>
<td>0.74</td>
</tr>
<tr>
<td>2:9:2906:A:OP1</td>
<td>9:6:50:LYS:CG</td>
<td>2.36</td>
<td>0.73</td>
</tr>
<tr>
<td>5:1:-1:HIS:CB</td>
<td>5:1:4:PHE:CE2</td>
<td>2.67</td>
<td>0.73</td>
</tr>
<tr>
<td>1:A:234:A:P</td>
<td>5:1:49:HIS:HA</td>
<td>2.28</td>
<td>0.73</td>
</tr>
<tr>
<td>7:5:35:ILE:CA</td>
<td>8:4:75:TYR:HE1</td>
<td>2.00</td>
<td>0.73</td>
</tr>
<tr>
<td>1:A:127:A:C2'</td>
<td>1:A:224:G:N3</td>
<td>2.47</td>
<td>0.73</td>
</tr>
<tr>
<td>2:9:2903:C:H5'</td>
<td>2:9:2903:C:H6</td>
<td>1.55</td>
<td>0.72</td>
</tr>
<tr>
<td>1:A:148:G:H4'</td>
<td>3:B:15:PHE:O</td>
<td>1.89</td>
<td>0.72</td>
</tr>
<tr>
<td>8:4:115:ILE:CG2</td>
<td>8:4:140:TYR:CZ</td>
<td>2.73</td>
<td>0.72</td>
</tr>
<tr>
<td>1:A:151:C:OP1</td>
<td>1:A:204:G:H4'</td>
<td>1.90</td>
<td>0.72</td>
</tr>
<tr>
<td>8:4:110:LYS:HG2</td>
<td>8:4:115:ILE:O</td>
<td>1.88</td>
<td>0.72</td>
</tr>
<tr>
<td>2:9:2851:G:O2'</td>
<td>2:9:2852:A:H5'</td>
<td>1.90</td>
<td>0.72</td>
</tr>
<tr>
<td>2:9:2866:U:H1'</td>
<td>2:9:2891:A:C4</td>
<td>2.25</td>
<td>0.71</td>
</tr>
<tr>
<td>1:A:125:G:C2'</td>
<td>1:A:227:G:C8</td>
<td>2.60</td>
<td>0.71</td>
</tr>
<tr>
<td>1:A:124:G:N1</td>
<td>1:A:126:C:C6</td>
<td>2.57</td>
<td>0.71</td>
</tr>
<tr>
<td>2:9:2866:U:H4'</td>
<td>2:9:2867:G:H5'</td>
<td>1.71</td>
<td>0.71</td>
</tr>
<tr>
<td>7:5:34:ARG:NH1</td>
<td>7:5:48:ILE:HG23</td>
<td>2.06</td>
<td>0.71</td>
</tr>
<tr>
<td>3:B:73:ASN:ND2</td>
<td>3:B:75:ASP:H</td>
<td>1.89</td>
<td>0.71</td>
</tr>
<tr>
<td>7:5:34:ARG:HH12</td>
<td>7:5:48:ILE:CG2</td>
<td>2.04</td>
<td>0.71</td>
</tr>
<tr>
<td>1:A:130:A:H2'</td>
<td>1:A:131:A:C8</td>
<td>2.26</td>
<td>0.71</td>
</tr>
<tr>
<td>8:4:122:THR:O</td>
<td>8:4:123:LEU:HD12</td>
<td>1.91</td>
<td>0.70</td>
</tr>
<tr>
<td>8:4:140:TYR:CZ</td>
<td>8:4:145:VAL:CG2</td>
<td>2.71</td>
<td>0.70</td>
</tr>
<tr>
<td>6:2:204:VAL:HG12</td>
<td>9:6:18:ARG:HD3</td>
<td>1.71</td>
<td>0.70</td>
</tr>
<tr>
<td>2:9:2909:G:O2'</td>
<td>2:9:2910:A:H5'</td>
<td>1.91</td>
<td>0.70</td>
</tr>
<tr>
<td>2:9:2827:A:H2'</td>
<td>2:9:2828:G:O4'</td>
<td>1.92</td>
<td>0.70</td>
</tr>
<tr>
<td>5:1:-1:HIS:CE1</td>
<td>5:1:68:VAL:O</td>
<td>2.43</td>
<td>0.70</td>
</tr>
<tr>
<td>2:9:2904:U:C5'</td>
<td>9:6:20:TYR:HE2</td>
<td>2.00</td>
<td>0.69</td>
</tr>
<tr>
<td>6:2:63:ARG:HB2</td>
<td>6:2:135:ARG:HB2</td>
<td>1.75</td>
<td>0.69</td>
</tr>
<tr>
<td>8:4:103:LYS:O</td>
<td>8:4:103:LYS:HE3</td>
<td>1.93</td>
<td>0.69</td>
</tr>
<tr>
<td>7:5:38:VAL:HG11</td>
<td>8:4:76:PRO:HG2</td>
<td>1.75</td>
<td>0.68</td>
</tr>
<tr>
<td>1:A:154:G:O2'</td>
<td>1:A:155:G:H5'</td>
<td>1.93</td>
<td>0.68</td>
</tr>
<tr>
<td>1:A:127:A:C4</td>
<td>1:A:225:C:C4</td>
<td>2.82</td>
<td>0.68</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:4:119:LYS:HG3</td>
<td>8:4:135:LYS:HB2</td>
<td>1.75</td>
<td>0.68</td>
</tr>
<tr>
<td>3:B:93:LEU:HD23</td>
<td>3:B:93:LEU:N</td>
<td>2.08</td>
<td>0.68</td>
</tr>
<tr>
<td>5:1:-1:His:HD1</td>
<td>5:1:68:VAL:C</td>
<td>1.95</td>
<td>0.68</td>
</tr>
<tr>
<td>5:1:-1:His:ND1</td>
<td>5:1:68:VAL:C</td>
<td>2.47</td>
<td>0.68</td>
</tr>
<tr>
<td>2:9:2895:C:OP1</td>
<td>9:6:77:ARG:NH1</td>
<td>2.27</td>
<td>0.67</td>
</tr>
<tr>
<td>5:1:-1:His:C</td>
<td>5:1:54:LEU:HD11</td>
<td>2.14</td>
<td>0.67</td>
</tr>
<tr>
<td>7:5:44:LYS:NZ</td>
<td>7:5:44:LYS:HA</td>
<td>2.08</td>
<td>0.67</td>
</tr>
<tr>
<td>1:A:175:G:H1</td>
<td>1:A:221:C:H42</td>
<td>1.42</td>
<td>0.67</td>
</tr>
<tr>
<td>1:A:125:G:H8</td>
<td>1:A:227:G:C6</td>
<td>2.04</td>
<td>0.67</td>
</tr>
<tr>
<td>3:B:15:PHE:CE1</td>
<td>3:B:85:GLN:HB2</td>
<td>2.30</td>
<td>0.67</td>
</tr>
<tr>
<td>3:B:14:ARG:HG2</td>
<td>3:B:14:ARG:O</td>
<td>1.95</td>
<td>0.66</td>
</tr>
<tr>
<td>1:A:128:U:C5'</td>
<td>1:A:224:G:N2</td>
<td>2.58</td>
<td>0.66</td>
</tr>
<tr>
<td>1:A:127:A:O2'</td>
<td>1:A:224:G:C2</td>
<td>2.44</td>
<td>0.65</td>
</tr>
<tr>
<td>1:A:233:U:O4'</td>
<td>5:1:40:GLU:HB3</td>
<td>1.68</td>
<td>0.65</td>
</tr>
<tr>
<td>6:2:202:LEU:O</td>
<td>6:2:206:ARG:HB2</td>
<td>1.96</td>
<td>0.65</td>
</tr>
<tr>
<td>1:A:172:A:N6</td>
<td>1:A:224:G:H2'</td>
<td>2.11</td>
<td>0.65</td>
</tr>
<tr>
<td>1:A:127:A:H3'</td>
<td>1:A:224:G:H22</td>
<td>1.58</td>
<td>0.65</td>
</tr>
<tr>
<td>5:1:0:SER:HA</td>
<td>5:1:28:PRO:HB2</td>
<td>1.78</td>
<td>0.64</td>
</tr>
<tr>
<td>2:9:2890:A:H5"</td>
<td>2:9:2890:A:C8</td>
<td>2.26</td>
<td>0.64</td>
</tr>
<tr>
<td>2:9:2894:C:O2'</td>
<td>2:9:2895:C:H5'</td>
<td>1.97</td>
<td>0.64</td>
</tr>
<tr>
<td>2:9:2908:A:H2'</td>
<td>2:9:2909:G:O4'</td>
<td>1.98</td>
<td>0.64</td>
</tr>
<tr>
<td>8:4:125:ARG:HH22</td>
<td>8:4:131:LYS:HZ3</td>
<td>1.45</td>
<td>0.64</td>
</tr>
<tr>
<td>2:9:2856:A:C4'</td>
<td>9:6:78:ARG:CG</td>
<td>2.24</td>
<td>0.64</td>
</tr>
<tr>
<td>1:A:157:A:H2'</td>
<td>1:A:158:C:C6</td>
<td>2.32</td>
<td>0.63</td>
</tr>
<tr>
<td>5:1:0:SER:HA</td>
<td>5:1:54:LEU:HD11</td>
<td>2.12</td>
<td>0.63</td>
</tr>
<tr>
<td>7:5:35:ILE:O</td>
<td>7:5:38:VAL:HG12</td>
<td>1.97</td>
<td>0.63</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3:B:60:VAL:HG23</td>
<td>3:B:83:ARG:C</td>
<td>2.18</td>
<td>0.63</td>
</tr>
<tr>
<td>1:A:148:G:O2'</td>
<td>3:B:83:ARG:NH2</td>
<td>2.31</td>
<td>0.63</td>
</tr>
<tr>
<td>2:9:2904:U:H4'</td>
<td>9:6:20:TYR:HD2</td>
<td>0.88</td>
<td>0.63</td>
</tr>
<tr>
<td>5:1:20:GLY:C</td>
<td>5:1:22:SER:H</td>
<td>2.01</td>
<td>0.63</td>
</tr>
<tr>
<td>1:A:124:G:O6</td>
<td>1:A:126:C:C5</td>
<td>2.51</td>
<td>0.63</td>
</tr>
<tr>
<td>3:B:88:GLN:HE21</td>
<td>3:B:92:SER:HB2</td>
<td>1.63</td>
<td>0.63</td>
</tr>
<tr>
<td>1:A:139:A:H2'</td>
<td>1:A:140:C:H6</td>
<td>1.63</td>
<td>0.63</td>
</tr>
<tr>
<td>8:4:119:LYS:C</td>
<td>8:4:119:LYS:HD2</td>
<td>2.18</td>
<td>0.63</td>
</tr>
<tr>
<td>1:A:149:A:H4'</td>
<td>3:B:17:CYS:SG</td>
<td>2.39</td>
<td>0.62</td>
</tr>
<tr>
<td>3:B:76:VAL:HG13</td>
<td>3:B:77:GLN:N</td>
<td>2.14</td>
<td>0.62</td>
</tr>
<tr>
<td>2:9:2849:U:O2'</td>
<td>2:9:2850:C:OP2</td>
<td>2.16</td>
<td>0.62</td>
</tr>
<tr>
<td>1:A:124:G:C6</td>
<td>1:A:126:C:H5</td>
<td>2.13</td>
<td>0.62</td>
</tr>
<tr>
<td>3:B:107:TYR:CZ</td>
<td>3:B:111:MET:HG3</td>
<td>2.35</td>
<td>0.62</td>
</tr>
<tr>
<td>8:4:122:THR:HG23</td>
<td>8:4:130:LYS:CD</td>
<td>2.30</td>
<td>0.62</td>
</tr>
<tr>
<td>1:A:139:A:H2'</td>
<td>1:A:140:C:C6</td>
<td>2.35</td>
<td>0.61</td>
</tr>
<tr>
<td>2:9:2855:G:N3</td>
<td>9:6:23:ASN:ND2</td>
<td>2.49</td>
<td>0.60</td>
</tr>
<tr>
<td>1:A:173:A:H2</td>
<td>1:A:224:G:N3</td>
<td>1.55</td>
<td>0.60</td>
</tr>
<tr>
<td>8:4:110:LYS:O</td>
<td>8:4:110:LYS:HE3</td>
<td>2.01</td>
<td>0.60</td>
</tr>
<tr>
<td>1:A:120:G:N2</td>
<td>1:A:230:C:O2</td>
<td>2.32</td>
<td>0.60</td>
</tr>
<tr>
<td>3:B:73:ASN:HD21</td>
<td>3:B:75:ASP:H</td>
<td>1.50</td>
<td>0.60</td>
</tr>
<tr>
<td>4:W:394:LYS:HB3</td>
<td>4:W:394:LYS:HZ2</td>
<td>1.67</td>
<td>0.60</td>
</tr>
<tr>
<td>4:W:344:PRO:O</td>
<td>4:W:346:SER:CB</td>
<td>2.50</td>
<td>0.60</td>
</tr>
<tr>
<td>8:4:91:THR:HG22</td>
<td>8:4:135:LYS:HG3</td>
<td>1.83</td>
<td>0.59</td>
</tr>
<tr>
<td>8:4:83:MET:HA</td>
<td>8:4:86:ILE:HG22</td>
<td>1.84</td>
<td>0.59</td>
</tr>
<tr>
<td>8:4:114:ASP:C</td>
<td>8:4:115:ILE:HG23</td>
<td>2.15</td>
<td>0.59</td>
</tr>
<tr>
<td>6:2:159:GLN:CD</td>
<td>6:2:206:ARG:HH22</td>
<td>2.06</td>
<td>0.59</td>
</tr>
<tr>
<td>5:1:-1:HIS:CG</td>
<td>5:1:69:GLY:CA</td>
<td>2.85</td>
<td>0.59</td>
</tr>
<tr>
<td>7:5:31:GLY:O</td>
<td>7:5:35:ILE:HG12</td>
<td>2.03</td>
<td>0.59</td>
</tr>
<tr>
<td>8:4:113:TYR:HB2</td>
<td>8:4:115:ILE:HD12</td>
<td>1.84</td>
<td>0.59</td>
</tr>
<tr>
<td>1:A:126:C:N3</td>
<td>1:A:226:U:N3</td>
<td>2.51</td>
<td>0.59</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2:9:2900:G:H2'</td>
<td>2:9:2901:C:O4'</td>
<td>2.02</td>
<td>0.59</td>
</tr>
<tr>
<td>1:A:172:A:C5</td>
<td>1:A:224:C:C2'</td>
<td>2.77</td>
<td>0.59</td>
</tr>
<tr>
<td>2:9:2866:U:H4'</td>
<td>2:9:2867:G:C5'</td>
<td>2.32</td>
<td>0.58</td>
</tr>
<tr>
<td>3:B:73:ASN:ND2</td>
<td>3:B:75:ASP:N</td>
<td>2.51</td>
<td>0.58</td>
</tr>
<tr>
<td>8:4:125:ARG:HD3</td>
<td>8:4:127:ASP:HB3</td>
<td>1.84</td>
<td>0.58</td>
</tr>
<tr>
<td>1:A:212:C:H4'</td>
<td>1:A:213:A:OP1</td>
<td>2.03</td>
<td>0.58</td>
</tr>
<tr>
<td>3:B:73:ASN:HD21</td>
<td>3:B:75:ASP:CB</td>
<td>2.16</td>
<td>0.58</td>
</tr>
<tr>
<td>5:1:-1:HIS:N</td>
<td>5:1:4:PHE:CZ</td>
<td>2.52</td>
<td>0.58</td>
</tr>
<tr>
<td>5:1:0:SER:HB2</td>
<td>5:1:28:PRO:C</td>
<td>2.19</td>
<td>0.58</td>
</tr>
<tr>
<td>2:9:2907:C:H2'</td>
<td>2:9:2908:A:O4'</td>
<td>2.04</td>
<td>0.57</td>
</tr>
<tr>
<td>8:4:115:ILE:CG2</td>
<td>8:4:140:TYR:CE1</td>
<td>2.85</td>
<td>0.57</td>
</tr>
<tr>
<td>1:A:233:U:H1'</td>
<td>5:1:40:GLU:HA</td>
<td>1.84</td>
<td>0.57</td>
</tr>
<tr>
<td>3:B:112:ILE:HG23</td>
<td>3:B:115:LEU:HD12</td>
<td>1.87</td>
<td>0.57</td>
</tr>
<tr>
<td>6:2:180:GLN:HG3</td>
<td>6:2:243:GLU:HB3</td>
<td>1.87</td>
<td>0.57</td>
</tr>
<tr>
<td>1:A:163:A:O5'</td>
<td>1:A:163:A:H8</td>
<td>1.87</td>
<td>0.57</td>
</tr>
<tr>
<td>3:B:60:VAL:CG2</td>
<td>3:B:84:VAL:HG12</td>
<td>2.35</td>
<td>0.57</td>
</tr>
<tr>
<td>2:9:2825:C:H4'</td>
<td>2:9:2826:G:O5'</td>
<td>2.05</td>
<td>0.57</td>
</tr>
<tr>
<td>3:B:86:LEU:HD13</td>
<td>3:B:99:PRO:O</td>
<td>2.05</td>
<td>0.56</td>
</tr>
<tr>
<td>5:1:121:LEU:O</td>
<td>5:1:125:GLU:HG3</td>
<td>2.06</td>
<td>0.56</td>
</tr>
<tr>
<td>5:1:0:SER:CA</td>
<td>5:1:29:VAL:N</td>
<td>2.69</td>
<td>0.56</td>
</tr>
<tr>
<td>8:4:96:VAL:HG23</td>
<td>8:4:130:LYS:HE2</td>
<td>1.87</td>
<td>0.56</td>
</tr>
<tr>
<td>7:5:44:LYS:HG2</td>
<td>7:5:44:LYS:HA</td>
<td>1.70</td>
<td>0.56</td>
</tr>
<tr>
<td>8:4:125:ARG:NH2</td>
<td>8:4:131:LYS:HZ3</td>
<td>2.04</td>
<td>0.56</td>
</tr>
<tr>
<td>1:A:127:A:C2'</td>
<td>1:A:128:U:C5'</td>
<td>2.79</td>
<td>0.56</td>
</tr>
<tr>
<td>1:A:173:A:C4</td>
<td>1:A:224:C:C2'</td>
<td>2.56</td>
<td>0.56</td>
</tr>
<tr>
<td>1:A:125:G:C4</td>
<td>1:A:226:U:O2</td>
<td>2.47</td>
<td>0.56</td>
</tr>
<tr>
<td>1:A:171:U:C3'</td>
<td>1:A:172:A:H5''</td>
<td>2.35</td>
<td>0.56</td>
</tr>
<tr>
<td>8:4:106:LYS:HG3</td>
<td>8:4:117:ALA:HB3</td>
<td>1.88</td>
<td>0.55</td>
</tr>
<tr>
<td>1:A:220:C:C3'</td>
<td>1:A:221:C:H5''</td>
<td>2.36</td>
<td>0.55</td>
</tr>
<tr>
<td>5:1:-1:HIS:CG</td>
<td>5:1:69:GLY:HA3</td>
<td>2.42</td>
<td>0.55</td>
</tr>
<tr>
<td>1:A:220:C:H2'</td>
<td>1:A:221:C:C5'</td>
<td>2.29</td>
<td>0.55</td>
</tr>
<tr>
<td>5:1:0:SER:CB</td>
<td>5:1:54:LEU:HD21</td>
<td>2.36</td>
<td>0.55</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:A:127:A:N9</td>
<td>1:A:225:C:C4</td>
<td>2.74</td>
<td>0.55</td>
</tr>
<tr>
<td>5:1:0:SER:C</td>
<td>5:1:29:VAL:H</td>
<td>2.09</td>
<td>0.55</td>
</tr>
<tr>
<td>3:B:76:VAL:HG13</td>
<td>3:B:77:GLN:H</td>
<td>1.71</td>
<td>0.55</td>
</tr>
<tr>
<td>7:5:27:LYS:HE3</td>
<td>7:5:27:LYS:C</td>
<td>2.28</td>
<td>0.55</td>
</tr>
<tr>
<td>8:4:83:MET:O</td>
<td>8:4:86:ILE:HG22</td>
<td>2.07</td>
<td>0.54</td>
</tr>
<tr>
<td>2:9:2856:A:H5"</td>
<td>9:6:78:ARG:HB2</td>
<td>1.89</td>
<td>0.54</td>
</tr>
<tr>
<td>3:B:77:GLN:HG2</td>
<td>3:B:77:GLN:O</td>
<td>2.05</td>
<td>0.54</td>
</tr>
<tr>
<td>8:4:73:LEU:HD23</td>
<td>8:4:96:VAL:HG12</td>
<td>1.88</td>
<td>0.54</td>
</tr>
<tr>
<td>5:1:0:SER:N</td>
<td>5:1:54:LEU:HD21</td>
<td>2.23</td>
<td>0.54</td>
</tr>
<tr>
<td>3:B:60:VAL:HB</td>
<td>3:B:84:VAL:HG12</td>
<td>1.90</td>
<td>0.54</td>
</tr>
<tr>
<td>8:4:125:ARG:HG3</td>
<td>8:4:129:LYS:O</td>
<td>2.08</td>
<td>0.54</td>
</tr>
<tr>
<td>3:B:116:LYS:N</td>
<td>3:B:116:LYS:HD2</td>
<td>2.23</td>
<td>0.54</td>
</tr>
<tr>
<td>6:2:192:GLN:O</td>
<td>6:2:196:GLU:HG3</td>
<td>2.08</td>
<td>0.54</td>
</tr>
<tr>
<td>2:9:2909:G:O2'</td>
<td>2:9:2910:A:C5'</td>
<td>2.56</td>
<td>0.54</td>
</tr>
<tr>
<td>3:B:64:LYS:NZ</td>
<td>3:B:65:ASN:H</td>
<td>2.06</td>
<td>0.54</td>
</tr>
<tr>
<td>7:5:33:LEU:HD13</td>
<td>7:5:48:ILE:HG13</td>
<td>1.89</td>
<td>0.54</td>
</tr>
<tr>
<td>1:A:125:G:C4</td>
<td>1:A:227:G:N7</td>
<td>2.74</td>
<td>0.54</td>
</tr>
<tr>
<td>7:5:34:ARG:C</td>
<td>8:4:75:TYR:CD1</td>
<td>2.79</td>
<td>0.53</td>
</tr>
<tr>
<td>2:9:2904:U:C5'</td>
<td>9:6:20:TYR:CD2</td>
<td>2.91</td>
<td>0.53</td>
</tr>
<tr>
<td>7:5:14:LYS:NZ</td>
<td>7:5:14:LYS:HA</td>
<td>2.23</td>
<td>0.53</td>
</tr>
<tr>
<td>3:B:73:ASN:HD21</td>
<td>3:B:75:ASP:N</td>
<td>2.05</td>
<td>0.53</td>
</tr>
<tr>
<td>5:1:29:VAL:O</td>
<td>5:1:33:ILE:HG13</td>
<td>2.09</td>
<td>0.53</td>
</tr>
<tr>
<td>1:A:208:A:H1'</td>
<td>4:W:380:ASP:O</td>
<td>2.08</td>
<td>0.53</td>
</tr>
<tr>
<td>3:B:116:LYS:O</td>
<td>3:B:120:GLN:HG2</td>
<td>2.09</td>
<td>0.53</td>
</tr>
<tr>
<td>3:B:88:GLN:O</td>
<td>3:B:91:GLY:N</td>
<td>2.42</td>
<td>0.53</td>
</tr>
<tr>
<td>1:A:127:A:C4</td>
<td>1:A:225:C:N3</td>
<td>2.77</td>
<td>0.53</td>
</tr>
<tr>
<td>5:1:8:PHE:HB3</td>
<td>5:1:14:VAL:HA</td>
<td>1.91</td>
<td>0.53</td>
</tr>
<tr>
<td>6:2:245:SER:O</td>
<td>6:2:256:ALA:HB1</td>
<td>2.09</td>
<td>0.53</td>
</tr>
<tr>
<td>7:5:34:ARG:NH1</td>
<td>7:5:48:ILE:CG2</td>
<td>2.70</td>
<td>0.53</td>
</tr>
<tr>
<td>1:A:195:U:H4'</td>
<td>4:W:411:GLY:O</td>
<td>2.08</td>
<td>0.52</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:A:127:A:O2'</td>
<td>1:A:224:G:N3</td>
<td>2.34</td>
<td>0.52</td>
</tr>
<tr>
<td>1:A:172:A:N1</td>
<td>1:A:224:G:H2'</td>
<td>2.24</td>
<td>0.52</td>
</tr>
<tr>
<td>3:B:112:ILE:C</td>
<td>3:B:114:LYS:H</td>
<td>2.13</td>
<td>0.52</td>
</tr>
<tr>
<td>2:9:2912:C:H2'</td>
<td>2:9:2913:A:O4'</td>
<td>2.09</td>
<td>0.52</td>
</tr>
<tr>
<td>3:B:64:LYS:HZ3</td>
<td>3:B:65:ASN:H</td>
<td>1.55</td>
<td>0.52</td>
</tr>
<tr>
<td>3:B:71:GLU:OE2</td>
<td>3:B:78:TYR:HD2</td>
<td>1.92</td>
<td>0.52</td>
</tr>
<tr>
<td>2:9:2858:U:H2'</td>
<td>2:9:2859:C:C6</td>
<td>2.44</td>
<td>0.52</td>
</tr>
<tr>
<td>3:B:41:VAL:CG1</td>
<td>3:B:42:GLU:N</td>
<td>2.72</td>
<td>0.52</td>
</tr>
<tr>
<td>8:4:85:LYS:HB3</td>
<td>8:4:91:THR:OG1</td>
<td>2.10</td>
<td>0.52</td>
</tr>
<tr>
<td>6:2:103:VAL:CG1</td>
<td>6:2:266:ALA:HA</td>
<td>2.40</td>
<td>0.52</td>
</tr>
<tr>
<td>1:A:164:G:OP2</td>
<td>1:A:164:G:H8</td>
<td>1.92</td>
<td>0.52</td>
</tr>
<tr>
<td>5:1:53:THR:O</td>
<td>5:1:69:GLY:HA2</td>
<td>2.10</td>
<td>0.52</td>
</tr>
<tr>
<td>8:4:114:ASP:C</td>
<td>8:4:115:ILE:CG2</td>
<td>2.75</td>
<td>0.52</td>
</tr>
<tr>
<td>2:9:2906:A:H5'</td>
<td>2:9:2907:C:O4'</td>
<td>2.10</td>
<td>0.52</td>
</tr>
<tr>
<td>1:A:126:C:C2</td>
<td>1:A:226:U:C6</td>
<td>2.86</td>
<td>0.51</td>
</tr>
<tr>
<td>3:B:64:LYS:H</td>
<td>3:B:64:LYS:HD3</td>
<td>1.71</td>
<td>0.51</td>
</tr>
<tr>
<td>8:4:119:LYS:CD</td>
<td>8:4:135:LYS:HZ3</td>
<td>2.13</td>
<td>0.51</td>
</tr>
<tr>
<td>1:A:175:G:H1</td>
<td>1:A:221:C:N4</td>
<td>2.08</td>
<td>0.51</td>
</tr>
<tr>
<td>7:5:35:ILE:CA</td>
<td>8:4:75:TYR:CE1</td>
<td>2.87</td>
<td>0.51</td>
</tr>
<tr>
<td>3:B:15:PHE:CZ</td>
<td>3:B:85:GLN:HB2</td>
<td>2.45</td>
<td>0.51</td>
</tr>
<tr>
<td>6:2:81:ARG:HD3</td>
<td>6:2:246:ALA:O</td>
<td>2.09</td>
<td>0.51</td>
</tr>
<tr>
<td>3:B:60:VAL:CG2</td>
<td>3:B:83:ARG:O</td>
<td>2.52</td>
<td>0.51</td>
</tr>
<tr>
<td>3:B:93:LEU:HD23</td>
<td>3:B:93:LEU:H</td>
<td>1.75</td>
<td>0.51</td>
</tr>
<tr>
<td>7:5:11:LEU:HD22</td>
<td>7:5:58:VAL:HG22</td>
<td>1.92</td>
<td>0.51</td>
</tr>
<tr>
<td>3:B:64:LYS:HZ3</td>
<td>3:B:65:ASN:HB2</td>
<td>1.75</td>
<td>0.51</td>
</tr>
<tr>
<td>3:B:56:VAL:HG21</td>
<td>3:B:107:TYR:CE2</td>
<td>2.45</td>
<td>0.50</td>
</tr>
<tr>
<td>8:4:125:ARG:CZ</td>
<td>8:4:131:LYS:CD</td>
<td>2.90</td>
<td>0.50</td>
</tr>
<tr>
<td>8:4:96:VAL:HG21</td>
<td>8:4:130:LYS:HE3</td>
<td>1.94</td>
<td>0.50</td>
</tr>
<tr>
<td>2:9:2905:A:O3'</td>
<td>9:6:50:LYS:HE2</td>
<td>2.06</td>
<td>0.50</td>
</tr>
<tr>
<td>1:A:127:A:C5</td>
<td>1:A:225:C:N4</td>
<td>2.79</td>
<td>0.50</td>
</tr>
<tr>
<td>5:1:10:LYS:HG2</td>
<td>6:2:94:ILE:HD11</td>
<td>1.92</td>
<td>0.50</td>
</tr>
<tr>
<td>1:A:233:U:CA'</td>
<td>5:1:40:GLU:HB3</td>
<td>2.38</td>
<td>0.50</td>
</tr>
<tr>
<td>1:A:126:C:O2'</td>
<td>1:A:226:U:H4'</td>
<td>2.10</td>
<td>0.50</td>
</tr>
<tr>
<td>1:A:126:C:C2</td>
<td>1:A:226:U:N3</td>
<td>2.46</td>
<td>0.50</td>
</tr>
<tr>
<td>2:9:2857:C:H5'</td>
<td>9:6:78:ARG:NE</td>
<td>2.26</td>
<td>0.50</td>
</tr>
<tr>
<td>1:A:233:U:H1'</td>
<td>5:1:40:GLU:CA</td>
<td>1.99</td>
<td>0.50</td>
</tr>
<tr>
<td>1:A:121:U:H2'</td>
<td>1:A:122:U:C6</td>
<td>2.46</td>
<td>0.50</td>
</tr>
<tr>
<td>3:B:68:TYR:CE2</td>
<td>3:B:70:ARG:HB2</td>
<td>2.46</td>
<td>0.50</td>
</tr>
<tr>
<td>8:4:119:LYS:CE</td>
<td>8:4:135:LYS:HD3</td>
<td>2.41</td>
<td>0.50</td>
</tr>
</tbody>
</table>
| 7:5:29:GLU:O | 7:5:33:LEU:HG | 2.11 | 0.50

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:5:16:LYS:HE2</td>
<td>7:5:16:LYS:N</td>
<td>2.27</td>
<td>0.50</td>
</tr>
<tr>
<td>7:5:12:TRP:NE1</td>
<td>7:5:61:VAL:HG22</td>
<td>2.23</td>
<td>0.49</td>
</tr>
<tr>
<td>1:A:136:G:N3</td>
<td>1:A:214:A:H2</td>
<td>2.09</td>
<td>0.49</td>
</tr>
<tr>
<td>8:4:125:ARG:HZ</td>
<td>8:4:131:LYS:HG3</td>
<td>2.42</td>
<td>0.49</td>
</tr>
<tr>
<td>1:A:125:G:N7</td>
<td>1:A:227:G:N1</td>
<td>2.76</td>
<td>0.49</td>
</tr>
<tr>
<td>3:B:24:ASN:ND2</td>
<td>3:B:27:LYS:HG3</td>
<td>2.22</td>
<td>0.49</td>
</tr>
<tr>
<td>7:5:7:LYS:NZ</td>
<td>7:5:7:LYS:HA</td>
<td>2.27</td>
<td>0.49</td>
</tr>
<tr>
<td>2:9:2855:G:C4</td>
<td>9:6:23:ASN:CG</td>
<td>2.82</td>
<td>0.49</td>
</tr>
<tr>
<td>4:W:394:LYS:HZ</td>
<td>4:W:394:LYS:HA</td>
<td>2.27</td>
<td>0.49</td>
</tr>
<tr>
<td>1:A:127:A:H2'</td>
<td>1:A:224:G:N2</td>
<td>0.45</td>
<td>0.49</td>
</tr>
<tr>
<td>2:9:2885:A:H2'</td>
<td>2:9:2886:C:H6</td>
<td>1.78</td>
<td>0.49</td>
</tr>
<tr>
<td>2:9:2824:A:H2'</td>
<td>2:9:2843:A:H5'</td>
<td>1.95</td>
<td>0.49</td>
</tr>
<tr>
<td>2:9:2856:A:H4'</td>
<td>9:6:78:ARG:HG3</td>
<td>0.59</td>
<td>0.49</td>
</tr>
<tr>
<td>1:A:130:A:H2'</td>
<td>1:A:131:A:H8</td>
<td>1.72</td>
<td>0.49</td>
</tr>
<tr>
<td>2:9:2912:C:O2'</td>
<td>2:9:2913:A:H5'</td>
<td>2.12</td>
<td>0.49</td>
</tr>
<tr>
<td>4:W:349:LEU:HZ</td>
<td>4:W:359:PHE:CE2</td>
<td>2.45</td>
<td>0.49</td>
</tr>
<tr>
<td>4:W:392:GLY:O</td>
<td>4:W:396:PHE:HD1</td>
<td>1.95</td>
<td>0.49</td>
</tr>
<tr>
<td>1:A:124:G:N7</td>
<td>1:A:125:G:N7</td>
<td>2.42</td>
<td>0.48</td>
</tr>
<tr>
<td>8:4:103:LYS:HZ</td>
<td>8:4:103:LYS:C</td>
<td>2.33</td>
<td>0.48</td>
</tr>
<tr>
<td>7:5:36:GLN:O</td>
<td>7:5:39:ALA:O</td>
<td>2.31</td>
<td>0.48</td>
</tr>
<tr>
<td>2:9:2903:C:O2'</td>
<td>2:9:2904:U:H5'</td>
<td>2.12</td>
<td>0.48</td>
</tr>
<tr>
<td>1:A:160:A:H2'</td>
<td>1:A:161:C:C6</td>
<td>2.49</td>
<td>0.48</td>
</tr>
<tr>
<td>3:B:29:ILE:HG22</td>
<td>3:B:30:ALA:O</td>
<td>2.28</td>
<td>0.48</td>
</tr>
<tr>
<td>2:9:2886:C:O2'</td>
<td>2:9:2887:G:HZ</td>
<td>2.14</td>
<td>0.48</td>
</tr>
<tr>
<td>6:2:186:LYS:HZ</td>
<td>6:2:190:LEU:HZ</td>
<td>1.95</td>
<td>0.48</td>
</tr>
<tr>
<td>8:4:119:LYS:HZ</td>
<td>8:4:120:VAL:HZ</td>
<td>2.29</td>
<td>0.48</td>
</tr>
<tr>
<td>1:A:165:G:N7</td>
<td>1:A:176:G:N7</td>
<td>2.82</td>
<td>0.48</td>
</tr>
<tr>
<td>6:2:170:SER:HZ</td>
<td>6:2:237:LEU:HZ</td>
<td>1.95</td>
<td>0.48</td>
</tr>
<tr>
<td>8:4:119:LYS:HZ</td>
<td>8:4:135:LYS:HZ</td>
<td>1.78</td>
<td>0.48</td>
</tr>
<tr>
<td>7:5:35:ILE:O</td>
<td>8:4:75:TYR:HE1</td>
<td>2.16</td>
<td>0.48</td>
</tr>
<tr>
<td>7:5:16:LYS:HZ</td>
<td>7:5:65:LYS:HE2</td>
<td>1.78</td>
<td>0.48</td>
</tr>
</tbody>
</table>
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:A:224:G:H5'</td>
<td>1:A:224:G:H8</td>
<td>1.79</td>
<td>0.48</td>
</tr>
<tr>
<td>8:4:96:VAL:CG2</td>
<td>8:4:130:LYS:CE</td>
<td>2.92</td>
<td>0.47</td>
</tr>
<tr>
<td>8:4:125:ARG:HH22</td>
<td>8:4:131:LYS:NZ</td>
<td>2.11</td>
<td>0.47</td>
</tr>
<tr>
<td>2:9:2842:G:C2'</td>
<td>2:9:2843:A:H5'</td>
<td>2.45</td>
<td>0.47</td>
</tr>
<tr>
<td>1:A:125:G:H2'</td>
<td>1:A:126:C:C6</td>
<td>2.48</td>
<td>0.47</td>
</tr>
<tr>
<td>8:4:125:ARG:CZ</td>
<td>8:4:125:ARG:HA</td>
<td>2.45</td>
<td>0.47</td>
</tr>
<tr>
<td>1:A:173:A:C2'</td>
<td>1:A:224:G:C5'</td>
<td>2.64</td>
<td>0.47</td>
</tr>
<tr>
<td>2:9:2831:C:H2'</td>
<td>2:9:2832:C:H5'</td>
<td>1.96</td>
<td>0.47</td>
</tr>
<tr>
<td>2:9:2897:C:O2'</td>
<td>2:9:2898:G:H5'</td>
<td>2.15</td>
<td>0.47</td>
</tr>
<tr>
<td>2:9:2836:G:HH2</td>
<td>2:9:2837:U:OP1</td>
<td>2.15</td>
<td>0.47</td>
</tr>
<tr>
<td>8:4:91:THR:HG22</td>
<td>8:4:135:LYS:CG</td>
<td>2.44</td>
<td>0.47</td>
</tr>
<tr>
<td>2:9:2854:A:O2'</td>
<td>9:6:26:LYS:NZ</td>
<td>2.43</td>
<td>0.47</td>
</tr>
<tr>
<td>3:B:14:ARG:CB</td>
<td>3:B:14:ARG:CZ</td>
<td>2.88</td>
<td>0.47</td>
</tr>
<tr>
<td>3:B:73:ASN:HD21</td>
<td>3:B:75:ASP:HB3</td>
<td>1.80</td>
<td>0.47</td>
</tr>
<tr>
<td>7:5:35:ILE:HA</td>
<td>7:5:38:VAL:HG12</td>
<td>1.95</td>
<td>0.46</td>
</tr>
<tr>
<td>2:9:2871:G:HH2</td>
<td>2:9:2872:U:C6</td>
<td>2.51</td>
<td>0.46</td>
</tr>
<tr>
<td>1:A:116:C:H2'</td>
<td>1:A:117:U:C6</td>
<td>2.50</td>
<td>0.46</td>
</tr>
<tr>
<td>5:1:56:TYR:HA</td>
<td>5:1:66:PHE:O</td>
<td>2.15</td>
<td>0.46</td>
</tr>
<tr>
<td>6:2:103:VAL:HG13</td>
<td>6:2:266:ALA:HA</td>
<td>1.97</td>
<td>0.46</td>
</tr>
<tr>
<td>8:4:144:ASP:OD1</td>
<td>8:4:145:VAL:HG23</td>
<td>2.14</td>
<td>0.46</td>
</tr>
<tr>
<td>7:5:53:LYS:O</td>
<td>7:5:57:ARG:HD3</td>
<td>2.15</td>
<td>0.46</td>
</tr>
<tr>
<td>2:9:2871:G:HH2</td>
<td>2:9:2872:U:H6</td>
<td>1.80</td>
<td>0.46</td>
</tr>
<tr>
<td>8:4:110:LYS:HZ2</td>
<td>8:4:115:ILE:N</td>
<td>2.14</td>
<td>0.46</td>
</tr>
<tr>
<td>7:5:5:LYS:NZ</td>
<td>7:5:47:ARG:HD2</td>
<td>2.31</td>
<td>0.46</td>
</tr>
<tr>
<td>8:4:125:ARG:HD3</td>
<td>8:4:127:ASP:CB</td>
<td>2.45</td>
<td>0.46</td>
</tr>
<tr>
<td>2:9:2911:C:O2'</td>
<td>2:9:2912:C:H5'</td>
<td>2.15</td>
<td>0.46</td>
</tr>
<tr>
<td>7:5:38:VAL:HG21</td>
<td>8:4:76:PRO:N</td>
<td>2.31</td>
<td>0.45</td>
</tr>
<tr>
<td>7:5:14:LYS:HB3</td>
<td>7:5:18:ASP:HB2</td>
<td>1.98</td>
<td>0.45</td>
</tr>
<tr>
<td>1:A:146:G:C6</td>
<td>1:A:147:G:C5</td>
<td>3.03</td>
<td>0.45</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3:B:75:ASP:OD1</td>
<td>3:B:76:VAL:N</td>
<td>2.47</td>
<td>0.45</td>
</tr>
<tr>
<td>1:A:207:C:C4</td>
<td>1:A:208:A:N7</td>
<td>2.84</td>
<td>0.45</td>
</tr>
<tr>
<td>1:A:125:G:N3</td>
<td>1:A:227:G:N7</td>
<td>2.64</td>
<td>0.45</td>
</tr>
<tr>
<td>3:B:43:ASN:C</td>
<td>3:B:118:ARG:HH22</td>
<td>2.20</td>
<td>0.45</td>
</tr>
<tr>
<td>5:1:0:SER:O</td>
<td>5:1:29:VAL:HG21</td>
<td>2.13</td>
<td>0.45</td>
</tr>
<tr>
<td>8:4:125:ARG:HB3</td>
<td>8:4:126:PRO:C</td>
<td>2.36</td>
<td>0.45</td>
</tr>
<tr>
<td>7:5:59:LEU:O</td>
<td>7:5:59:LEU:HD13</td>
<td>2.17</td>
<td>0.45</td>
</tr>
<tr>
<td>1:A:229:U:H2'</td>
<td>1:A:230:C:C6</td>
<td>2.51</td>
<td>0.45</td>
</tr>
<tr>
<td>5:1:20:GLY:C</td>
<td>5:1:22:SER:N</td>
<td>2.69</td>
<td>0.45</td>
</tr>
<tr>
<td>7:5:37:LYS:C</td>
<td>7:5:39:ALA:O</td>
<td>2.55</td>
<td>0.45</td>
</tr>
<tr>
<td>7:5:37:LYS:N</td>
<td>7:5:41:SER:HB3</td>
<td>2.32</td>
<td>0.45</td>
</tr>
<tr>
<td>7:5:65:LYS:O</td>
<td>7:5:66:GLN:HB3</td>
<td>2.16</td>
<td>0.45</td>
</tr>
<tr>
<td>8:4:83:MET:CA</td>
<td>8:4:86:ILE:HG22</td>
<td>2.47</td>
<td>0.44</td>
</tr>
<tr>
<td>2:9:2831:C:C5"</td>
<td>2:9:2832:C:H5"</td>
<td>2.46</td>
<td>0.44</td>
</tr>
<tr>
<td>1:A:168:G:H3'</td>
<td>1:A:169:C:H5"</td>
<td>1.99</td>
<td>0.44</td>
</tr>
<tr>
<td>3:B:116:LYS:CD</td>
<td>3:B:116:LYS:N</td>
<td>2.80</td>
<td>0.44</td>
</tr>
<tr>
<td>1:A:162:C:H2'</td>
<td>1:A:163:A:C8</td>
<td>2.52</td>
<td>0.44</td>
</tr>
<tr>
<td>1:A:172:A:C6</td>
<td>1:A:224:G:HO2'</td>
<td>1.69</td>
<td>0.44</td>
</tr>
<tr>
<td>3:B:76:VAL:C</td>
<td>3:B:78:TYR:N</td>
<td>2.70</td>
<td>0.44</td>
</tr>
<tr>
<td>3:B:76:VAL:O</td>
<td>3:B:78:TYR:N</td>
<td>2.50</td>
<td>0.44</td>
</tr>
<tr>
<td>3:B:35:ILE:HD11</td>
<td>3:B:40:ALA:HA</td>
<td>1.99</td>
<td>0.44</td>
</tr>
<tr>
<td>3:B:76:VAL:CG1</td>
<td>3:B:77:GLN:N</td>
<td>2.80</td>
<td>0.44</td>
</tr>
<tr>
<td>8:4:85:LYS:HB3</td>
<td>8:4:91:THR:HG1</td>
<td>1.83</td>
<td>0.44</td>
</tr>
<tr>
<td>7:5:36:GLN:HB3</td>
<td>7:5:41:SER:HA</td>
<td>2.00</td>
<td>0.44</td>
</tr>
<tr>
<td>2:9:2885:A:H2'</td>
<td>2:9:2886:C:C6</td>
<td>2.52</td>
<td>0.44</td>
</tr>
<tr>
<td>1:A:163:A:H2'</td>
<td>1:A:164:G:N9</td>
<td>2.32</td>
<td>0.44</td>
</tr>
<tr>
<td>7:5:16:LYS:HG3</td>
<td>7:5:67:ARG:O</td>
<td>2.17</td>
<td>0.44</td>
</tr>
<tr>
<td>2:9:2846:C:H2'</td>
<td>2:9:2847:G:H8</td>
<td>1.82</td>
<td>0.44</td>
</tr>
<tr>
<td>1:A:186:C:H6</td>
<td>1:A:186:C:O5'</td>
<td>2.01</td>
<td>0.44</td>
</tr>
<tr>
<td>3:B:45:THR:O</td>
<td>3:B:46:ALA:C</td>
<td>2.56</td>
<td>0.44</td>
</tr>
<tr>
<td>6:2:82:LEU:HD23</td>
<td>6:2:258:ILE:HD12</td>
<td>2.00</td>
<td>0.44</td>
</tr>
<tr>
<td>7:5:66:GLN:HG2</td>
<td>7:5:66:GLN:O</td>
<td>2.18</td>
<td>0.44</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:A:124:G:H1</td>
<td>1:A:125:G:H2'</td>
<td>1.31</td>
<td>0.44</td>
</tr>
<tr>
<td>1:A:138:G:H2'</td>
<td>1:A:139:A:H8</td>
<td>1.83</td>
<td>0.44</td>
</tr>
<tr>
<td>7:5:47:ARG:O</td>
<td>7:5:51:ILE:HG12</td>
<td>2.17</td>
<td>0.44</td>
</tr>
<tr>
<td>2:9:2859:C:O2'</td>
<td>2:9:2860:G:H5'</td>
<td>2.18</td>
<td>0.44</td>
</tr>
<tr>
<td>1:A:179:G:N2</td>
<td>1:A:180:G:H1'</td>
<td>2.33</td>
<td>0.44</td>
</tr>
<tr>
<td>3:B:88:GLN:HG3</td>
<td>3:B:92:SER:O</td>
<td>2.18</td>
<td>0.44</td>
</tr>
<tr>
<td>8:4:110:LYS:HE3</td>
<td>8:4:110:LYS:C</td>
<td>2.37</td>
<td>0.43</td>
</tr>
<tr>
<td>3:B:96:VAL:HG23</td>
<td>3:B:97:GLN:N</td>
<td>2.33</td>
<td>0.43</td>
</tr>
<tr>
<td>4:W:430:MET:HA</td>
<td>4:W:433:LYS:HB3</td>
<td>2.00</td>
<td>0.43</td>
</tr>
<tr>
<td>8:4:74:LYS:NZ</td>
<td>8:4:74:LYS:HA</td>
<td>2.33</td>
<td>0.43</td>
</tr>
<tr>
<td>2:9:2890:A:C2'</td>
<td>2:9:2891:A:OP2</td>
<td>2.65</td>
<td>0.43</td>
</tr>
<tr>
<td>8:4:77:LEU:HD13</td>
<td>8:4:95:ILE:HD11</td>
<td>1.99</td>
<td>0.43</td>
</tr>
<tr>
<td>7:5:65:LYS:O</td>
<td>7:5:66:GLN:CB</td>
<td>2.66</td>
<td>0.43</td>
</tr>
<tr>
<td>1:A:125:G:H2'</td>
<td>1:A:126:C:H6</td>
<td>1.81</td>
<td>0.43</td>
</tr>
<tr>
<td>1:A:221:C:N4</td>
<td>1:A:222:G:C6</td>
<td>2.82</td>
<td>0.43</td>
</tr>
<tr>
<td>3:B:116:LYS:H</td>
<td>3:B:116:LYS:HE3</td>
<td>1.83</td>
<td>0.43</td>
</tr>
<tr>
<td>3:B:15:PHE:O</td>
<td>3:B:83:ARG:NH2</td>
<td>2.52</td>
<td>0.43</td>
</tr>
<tr>
<td>1:A:171:U:H3'</td>
<td>1:A:172:A:C5'</td>
<td>2.49</td>
<td>0.43</td>
</tr>
<tr>
<td>2:9:2872:U:H2'</td>
<td>2:9:2873:C:H6</td>
<td>1.84</td>
<td>0.43</td>
</tr>
<tr>
<td>2:9:2899:A:O2'</td>
<td>2:9:2900:G:H5'</td>
<td>2.19</td>
<td>0.43</td>
</tr>
<tr>
<td>1:A:117:U:H2'</td>
<td>1:A:118:A:C8</td>
<td>2.53</td>
<td>0.43</td>
</tr>
<tr>
<td>3:B:24:ASN:HD22</td>
<td>3:B:27:LYS:CG</td>
<td>2.22</td>
<td>0.43</td>
</tr>
<tr>
<td>3:B:53:CYS:O</td>
<td>3:B:58:LEU:HB2</td>
<td>2.19</td>
<td>0.43</td>
</tr>
<tr>
<td>5:1:37:LEU:C</td>
<td>5:1:37:LEU:HD12</td>
<td>2.38</td>
<td>0.43</td>
</tr>
<tr>
<td>6:2:192:GLN:HG3</td>
<td>6:2:241:PHE:CE1</td>
<td>2.54</td>
<td>0.43</td>
</tr>
<tr>
<td>1:A:150:G:O2'</td>
<td>1:A:203:G:N3</td>
<td>2.49</td>
<td>0.43</td>
</tr>
<tr>
<td>3:B:23:LEU:HB2</td>
<td>3:B:44:PRO:HG3</td>
<td>2.01</td>
<td>0.43</td>
</tr>
<tr>
<td>3:B:73:ASN:ND2</td>
<td>3:B:74:ARG:N</td>
<td>2.67</td>
<td>0.43</td>
</tr>
<tr>
<td>8:4:110:LYS:HZ1</td>
<td>8:4:114:ASP:HA</td>
<td>1.83</td>
<td>0.43</td>
</tr>
<tr>
<td>8:4:118:LYS:NZ</td>
<td>8:4:118:LYS:HA</td>
<td>2.33</td>
<td>0.43</td>
</tr>
<tr>
<td>7:5:62:ILE:HG23</td>
<td>7:5:67:ARG:HA</td>
<td>2.01</td>
<td>0.43</td>
</tr>
<tr>
<td>2:9:2838:A:H2'</td>
<td>2:9:2839:C:C6</td>
<td>2.54</td>
<td>0.43</td>
</tr>
<tr>
<td>3:B:41:VAL:HG12</td>
<td>3:B:42:GLU:N</td>
<td>2.34</td>
<td>0.43</td>
</tr>
<tr>
<td>3:B:60:VAL:CB</td>
<td>3:B:84:VAL:HG12</td>
<td>2.49</td>
<td>0.43</td>
</tr>
<tr>
<td>3:B:94:CYS:C</td>
<td>3:B:95:LEU:HD23</td>
<td>2.38</td>
<td>0.43</td>
</tr>
<tr>
<td>6:2:258:ILE:O</td>
<td>6:2:262:GLU:HG3</td>
<td>2.19</td>
<td>0.42</td>
</tr>
<tr>
<td>7:5:66:GLN:O</td>
<td>7:5:67:ARG:CB</td>
<td>2.67</td>
<td>0.42</td>
</tr>
<tr>
<td>2:9:2885:A:O2'</td>
<td>2:9:2886:C:H5'</td>
<td>2.19</td>
<td>0.42</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:4:119:LYS:CD</td>
<td>8:4:119:LYS:C</td>
<td>2.85</td>
<td>0.42</td>
</tr>
<tr>
<td>8:4:125:ARG:NE</td>
<td>8:4:131:LYS:HG3</td>
<td>2.34</td>
<td>0.42</td>
</tr>
<tr>
<td>7:5:54:SER:CA</td>
<td>7:5:57:ARG:HE</td>
<td>2.26</td>
<td>0.42</td>
</tr>
<tr>
<td>4:W:347:GLN:O</td>
<td>4:W:351:MET:HG3</td>
<td>2.18</td>
<td>0.42</td>
</tr>
<tr>
<td>2:9:2847:G:O2'</td>
<td>2:9:2848:G:H5'</td>
<td>2.19</td>
<td>0.42</td>
</tr>
<tr>
<td>1:A:195:U:C4'</td>
<td>4:W:411:GLY:HA3</td>
<td>2.50</td>
<td>0.42</td>
</tr>
<tr>
<td>3:B:19:TYR:CE2</td>
<td>3:B:81:ARG:HD3</td>
<td>2.55</td>
<td>0.42</td>
</tr>
<tr>
<td>3:B:42:GLU:HG3</td>
<td>3:B:43:ASN:N</td>
<td>2.34</td>
<td>0.42</td>
</tr>
<tr>
<td>1:A:160:A:H2'</td>
<td>1:A:161:C:H6</td>
<td>1.84</td>
<td>0.42</td>
</tr>
<tr>
<td>8:4:98:LEU:HA</td>
<td>8:4:130:LYS:HB2</td>
<td>2.01</td>
<td>0.42</td>
</tr>
<tr>
<td>5:1:0:SER:C</td>
<td>5:1:29:VAL:N</td>
<td>2.73</td>
<td>0.42</td>
</tr>
<tr>
<td>3:B:16:ILE:HG12</td>
<td>3:B:84:VAL:HG22</td>
<td>2.02</td>
<td>0.42</td>
</tr>
<tr>
<td>3:B:56:VAL:O</td>
<td>3:B:56:VAL:HG12</td>
<td>2.20</td>
<td>0.42</td>
</tr>
<tr>
<td>3:B:93:LEU:CD2</td>
<td>3:B:93:LEU:N</td>
<td>2.77</td>
<td>0.42</td>
</tr>
<tr>
<td>3:B:107:TYR:O</td>
<td>3:B:111:MET:HG2</td>
<td>2.19</td>
<td>0.42</td>
</tr>
<tr>
<td>1:A:149:A:C4'</td>
<td>3:B:17:CYS:SG</td>
<td>3.08</td>
<td>0.42</td>
</tr>
<tr>
<td>6:2:71:CYS:O</td>
<td>6:2:72:ASP:HB2</td>
<td>2.19</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:233:U:C3'</td>
<td>1:A:234:A:C5'</td>
<td>2.98</td>
<td>0.41</td>
</tr>
<tr>
<td>3:B:18:Ile:HD12</td>
<td>3:B:105:MET:HG2</td>
<td>2.02</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:171:U:H5'</td>
<td>1:A:172:A:OP2</td>
<td>2.20</td>
<td>0.41</td>
</tr>
<tr>
<td>2:9:2836:G:O2'</td>
<td>2:9:2837:U:P</td>
<td>2.78</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:126:C:C4'</td>
<td>1:A:226:U:C2</td>
<td>2.99</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:223:U:H2'</td>
<td>1:A:224:G:C5'</td>
<td>2.49</td>
<td>0.41</td>
</tr>
<tr>
<td>3:B:22:TYR:CD1</td>
<td>3:B:34:ARG:HG3</td>
<td>2.56</td>
<td>0.41</td>
</tr>
<tr>
<td>8:4:125:ARG:HH22</td>
<td>8:4:131:LYS:CE</td>
<td>2.34</td>
<td>0.41</td>
</tr>
<tr>
<td>7:5:36:GLN:O</td>
<td>7:5:41:SER:HA</td>
<td>2.20</td>
<td>0.41</td>
</tr>
<tr>
<td>2:9:2858:U:H2'</td>
<td>2:9:2859:C:H6</td>
<td>1.85</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:126:C:H2'</td>
<td>1:A:127:A:O4'</td>
<td>2.21</td>
<td>0.41</td>
</tr>
<tr>
<td>6:2:103:VAL:HG21</td>
<td>6:2:269:ALA:HB2</td>
<td>2.02</td>
<td>0.41</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:5:5:LYS:HG3</td>
<td>7:5:6:VAL:HG23</td>
<td>2.03</td>
<td>0.41</td>
</tr>
<tr>
<td>2:9:2893:C:O2'</td>
<td>2:9:2894:C:O5'</td>
<td>2.20</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:151:C:H2'</td>
<td>1:A:152:G:H8</td>
<td>1.86</td>
<td>0.41</td>
</tr>
<tr>
<td>3:B:116:LYS:H</td>
<td>3:B:116:LYS:CE</td>
<td>2.34</td>
<td>0.41</td>
</tr>
<tr>
<td>3:B:76:VAL:CG1</td>
<td>3:B:77:GLN:H</td>
<td>2.34</td>
<td>0.41</td>
</tr>
<tr>
<td>3:B:88:GLN:O</td>
<td>3:B:89:GLU:C</td>
<td>2.58</td>
<td>0.41</td>
</tr>
<tr>
<td>2:9:2877:G:N2</td>
<td>2:9:2879:A:H3'</td>
<td>2.93</td>
<td>0.41</td>
</tr>
<tr>
<td>8:4:100:ALA:O</td>
<td>8:4:104:LYS:HG3</td>
<td>2.21</td>
<td>0.41</td>
</tr>
<tr>
<td>2:9:2854:A:C2'</td>
<td>9:6:26:LYS:CE</td>
<td>2.83</td>
<td>0.41</td>
</tr>
<tr>
<td>2:9:2825:C:C2</td>
<td>2:9:2826:G:C5</td>
<td>3.09</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:124:G:N1</td>
<td>1:A:125:G:C4</td>
<td>2.50</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:193:G:H2'</td>
<td>1:A:194:G:O4'</td>
<td>2.21</td>
<td>0.41</td>
</tr>
<tr>
<td>2:9:2906:A:P</td>
<td>9:6:50:LYS:HE2</td>
<td>2.61</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:207:C:O2'</td>
<td>1:A:208:A:H5'</td>
<td>2.21</td>
<td>0.41</td>
</tr>
<tr>
<td>6:2:68:VAL:C</td>
<td>6:2:75:LYS:HD3</td>
<td>2.41</td>
<td>0.40</td>
</tr>
<tr>
<td>8:4:119:LYS:HE2</td>
<td>8:4:135:LYS:CB</td>
<td>2.52</td>
<td>0.40</td>
</tr>
<tr>
<td>6:2:77:LEU:HG</td>
<td>6:2:246:ALA:HB1</td>
<td>2.02</td>
<td>0.40</td>
</tr>
<tr>
<td>2:9:2880:A:H2'</td>
<td>2:9:2881:C:O4'</td>
<td>2.21</td>
<td>0.40</td>
</tr>
<tr>
<td>1:A:118:A:H2'</td>
<td>1:A:119:A:H5'</td>
<td>2.03</td>
<td>0.40</td>
</tr>
<tr>
<td>1:A:164:G:C8</td>
<td>1:A:164:G:OP2</td>
<td>2.73</td>
<td>0.40</td>
</tr>
<tr>
<td>8:4:106:LYS:O</td>
<td>8:4:109:VAL:HG12</td>
<td>2.20</td>
<td>0.40</td>
</tr>
</tbody>
</table>

There are no symmetry-related clashes.

5.3 Torsion angles

5.3.1 Protein backbone

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.
The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Analysed</th>
<th>Favoured</th>
<th>Allowed</th>
<th>Outliers</th>
<th>Percentiles</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>B</td>
<td>105/108 (97%)</td>
<td>87 (83%)</td>
<td>11 (10%)</td>
<td>7 (7%)</td>
<td>1/21</td>
</tr>
<tr>
<td>4</td>
<td>W</td>
<td>107/109 (98%)</td>
<td>100 (94%)</td>
<td>2 (2%)</td>
<td>5 (5%)</td>
<td>3/28</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>115/185 (62%)</td>
<td>107 (93%)</td>
<td>7 (6%)</td>
<td>1 (1%)</td>
<td>20/63</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>182/214 (85%)</td>
<td>177 (97%)</td>
<td>5 (3%)</td>
<td>0</td>
<td>100/100</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>62/124 (50%)</td>
<td>55 (89%)</td>
<td>2 (3%)</td>
<td>5 (8%)</td>
<td>1/16</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>79/152 (52%)</td>
<td>71 (90%)</td>
<td>4 (5%)</td>
<td>4 (5%)</td>
<td>2/26</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>79/123 (64%)</td>
<td>66 (84%)</td>
<td>10 (13%)</td>
<td>3 (4%)</td>
<td>4/32</td>
</tr>
<tr>
<td>All</td>
<td>All</td>
<td>729/1015 (72%)</td>
<td>663 (91%)</td>
<td>41 (6%)</td>
<td>25 (3%)</td>
<td>7/35</td>
</tr>
</tbody>
</table>

All (25) Ramachandran outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>B</td>
<td>42</td>
<td>GLU</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>75</td>
<td>ASP</td>
</tr>
<tr>
<td>4</td>
<td>W</td>
<td>344</td>
<td>PRO</td>
</tr>
<tr>
<td>4</td>
<td>W</td>
<td>345</td>
<td>PHE</td>
</tr>
<tr>
<td>4</td>
<td>W</td>
<td>362</td>
<td>LYS</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>39</td>
<td>ALA</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>45</td>
<td>LEU</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>101</td>
<td>ASP</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>125</td>
<td>ARG</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>24</td>
<td>LEU</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>52</td>
<td>MET</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>90</td>
<td>GLU</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>99</td>
<td>PRO</td>
</tr>
<tr>
<td>4</td>
<td>W</td>
<td>346</td>
<td>SER</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>66</td>
<td>GLN</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>127</td>
<td>ASP</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>141</td>
<td>ASP</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>38</td>
<td>VAL</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>43</td>
<td>SER</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>64</td>
<td>LYS</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>77</td>
<td>GLN</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>23</td>
<td>ASP</td>
</tr>
<tr>
<td>4</td>
<td>W</td>
<td>363</td>
<td>GLY</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>56</td>
<td>VAL</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>96</td>
<td>VAL</td>
</tr>
</tbody>
</table>
5.3.2 Protein sidechains

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Analysed</th>
<th>Rotameric</th>
<th>Outliers</th>
<th>Percentiles</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>B</td>
<td>96/97 (99%)</td>
<td>92 (96%)</td>
<td>4 (4%)</td>
<td>34 64</td>
</tr>
<tr>
<td>4</td>
<td>W</td>
<td>96/96 (100%)</td>
<td>91 (95%)</td>
<td>5 (5%)</td>
<td>27 59</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>115/166 (69%)</td>
<td>111 (96%)</td>
<td>4 (4%)</td>
<td>41 69</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>164/182 (90%)</td>
<td>163 (99%)</td>
<td>1 (1%)</td>
<td>89 94</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>55/109 (50%)</td>
<td>44 (80%)</td>
<td>11 (20%)</td>
<td>1 9</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>72/128 (56%)</td>
<td>53 (74%)</td>
<td>19 (26%)</td>
<td>0 4</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>72/108 (67%)</td>
<td>51 (71%)</td>
<td>21 (29%)</td>
<td>0 3</td>
</tr>
<tr>
<td>All</td>
<td>All</td>
<td>670/886 (76%)</td>
<td>605 (90%)</td>
<td>65 (10%)</td>
<td>14 35</td>
</tr>
</tbody>
</table>

All (65) residues with a non-rotameric sidechain are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>B</td>
<td>39</td>
<td>LYS</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>64</td>
<td>LYS</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>93</td>
<td>LEU</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>116</td>
<td>LYS</td>
</tr>
<tr>
<td>4</td>
<td>W</td>
<td>349</td>
<td>LEU</td>
</tr>
<tr>
<td>4</td>
<td>W</td>
<td>365</td>
<td>GLU</td>
</tr>
<tr>
<td>4</td>
<td>W</td>
<td>383</td>
<td>ASN</td>
</tr>
<tr>
<td>4</td>
<td>W</td>
<td>412</td>
<td>VAL</td>
</tr>
<tr>
<td>4</td>
<td>W</td>
<td>427</td>
<td>PHE</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>5</td>
<td>PHE</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>13</td>
<td>LEU</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>37</td>
<td>LEU</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>40</td>
<td>GLU</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>159</td>
<td>GLN</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>7</td>
<td>LYS</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>14</td>
<td>LYS</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>16</td>
<td>LYS</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>21</td>
<td>LYS</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>25</td>
<td>GLU</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>27</td>
<td>LYS</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>5</td>
<td>38</td>
<td>VAL</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>44</td>
<td>LYS</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>46</td>
<td>ASN</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>57</td>
<td>ARG</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>63</td>
<td>ASN</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>70</td>
<td>TYR</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>74</td>
<td>LYS</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>80</td>
<td>GLU</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>87</td>
<td>GLU</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>90</td>
<td>ASN</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>97</td>
<td>ASP</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>99</td>
<td>LYS</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>101</td>
<td>ASP</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>103</td>
<td>LYS</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>104</td>
<td>LYS</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>110</td>
<td>LYS</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>115</td>
<td>ILE</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>118</td>
<td>LYS</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>119</td>
<td>LYS</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>125</td>
<td>ARG</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>129</td>
<td>LYS</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>135</td>
<td>LYS</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>141</td>
<td>ASP</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>147</td>
<td>ASN</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>18</td>
<td>ARG</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>23</td>
<td>ASN</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>26</td>
<td>LYS</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>27</td>
<td>ARG</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>28</td>
<td>LEU</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>34</td>
<td>LYS</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>57</td>
<td>VAL</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>58</td>
<td>ARG</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>59</td>
<td>ILE</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>62</td>
<td>LYS</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>65</td>
<td>LYS</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>73</td>
<td>ARG</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>77</td>
<td>ARG</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>80</td>
<td>ARG</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>85</td>
<td>ARG</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>86</td>
<td>LYS</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>87</td>
<td>ARG</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>88</td>
<td>ASN</td>
</tr>
</tbody>
</table>

Continued on next page...
Some sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (21) such sidechains are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>B</td>
<td>24</td>
<td>ASN</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>59</td>
<td>ASN</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>65</td>
<td>ASN</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>73</td>
<td>ASN</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>88</td>
<td>GLN</td>
</tr>
<tr>
<td>4</td>
<td>W</td>
<td>383</td>
<td>ASN</td>
</tr>
<tr>
<td>4</td>
<td>W</td>
<td>385</td>
<td>GLN</td>
</tr>
<tr>
<td>4</td>
<td>W</td>
<td>429</td>
<td>GLN</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>49</td>
<td>HIS</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>99</td>
<td>GLN</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>91</td>
<td>GLN</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>194</td>
<td>GLN</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>22</td>
<td>GLN</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>63</td>
<td>ASN</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>66</td>
<td>GLN</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>71</td>
<td>GLN</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>116</td>
<td>GLN</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>23</td>
<td>ASN</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>29</td>
<td>HIS</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>39</td>
<td>ASN</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>64</td>
<td>ASN</td>
</tr>
</tbody>
</table>

5.3.3 RNA

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Analysed</th>
<th>Backbone Outliers</th>
<th>Pucker Outliers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>124/127 (97%)</td>
<td>22 (17%)</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>9</td>
<td>89/90 (98%)</td>
<td>10 (11%)</td>
<td>0</td>
</tr>
<tr>
<td>All</td>
<td>All</td>
<td>213/217 (98%)</td>
<td>32 (15%)</td>
<td>0</td>
</tr>
</tbody>
</table>

All (32) RNA backbone outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>128</td>
<td>U</td>
</tr>
</tbody>
</table>
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>129</td>
<td>C</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>164</td>
<td>G</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>168</td>
<td>G</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>169</td>
<td>C</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>171</td>
<td>U</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>172</td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>173</td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>174</td>
<td>G</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>176</td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>177</td>
<td>G</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>187</td>
<td>G</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>191</td>
<td>C</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>213</td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>214</td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>215</td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>219</td>
<td>C</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>221</td>
<td>C</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>224</td>
<td>G</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>227</td>
<td>G</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>232</td>
<td>G</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>234</td>
<td>A</td>
</tr>
<tr>
<td>2</td>
<td>9</td>
<td>2826</td>
<td>G</td>
</tr>
<tr>
<td>2</td>
<td>9</td>
<td>2827</td>
<td>A</td>
</tr>
<tr>
<td>2</td>
<td>9</td>
<td>2837</td>
<td>U</td>
</tr>
<tr>
<td>2</td>
<td>9</td>
<td>2850</td>
<td>C</td>
</tr>
<tr>
<td>2</td>
<td>9</td>
<td>2867</td>
<td>G</td>
</tr>
<tr>
<td>2</td>
<td>9</td>
<td>2876</td>
<td>G</td>
</tr>
<tr>
<td>2</td>
<td>9</td>
<td>2890</td>
<td>A</td>
</tr>
<tr>
<td>2</td>
<td>9</td>
<td>2891</td>
<td>A</td>
</tr>
<tr>
<td>2</td>
<td>9</td>
<td>2903</td>
<td>C</td>
</tr>
<tr>
<td>2</td>
<td>9</td>
<td>2914</td>
<td>A</td>
</tr>
</tbody>
</table>

There are no RNA pucker outliers to report.

5.4 Non-standard residues in protein, DNA, RNA chains

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates

There are no carbohydrates in this entry.
5.6 Ligand geometry

There are no ligands in this entry.

5.7 Other polymers

There are no such residues in this entry.

5.8 Polymer linkage issues

There are no chain breaks in this entry.