PDB ID : 2FRX
Title : Crystal structure of YebU, a m5C RNA methyltransferase from E.coli
Authors : Erlandsen, H.; Nordlund, P.; Hallberg, B.M.; Johnson, K.A.; Ericsson, U.B.
Deposited on : 2006-01-20
Resolution : 2.90 Å (reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org
A user guide is available at
http://wwpdb.org/validation/2016/XrayValidationReportHelp
with specific help available everywhere you see the symbol.

The following versions of software and data (see references) were used in the production of this report:

MolProbity : 4.02b-467
Xtriage (Phenix) : 1.9-1692
EDS : trunk28620
Percentile statistics : 20161228.v01 (using entries in the PDB archive December 28th 2016)
Refmac : 5.8.0135
CCP4 : 6.5.0
Ideal geometry (proteins) : Engh & Huber (2001)
Ideal geometry (DNA, RNA) : Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP) : recalc28949
1 Overall quality at a glance

The following experimental techniques were used to determine the structure:

X-RAY DIFFRACTION

The reported resolution of this entry is 2.90 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

<table>
<thead>
<tr>
<th>Metric</th>
<th>Whole archive (#Entries)</th>
<th>Similar resolution (#Entries, resolution range(Å))</th>
</tr>
</thead>
<tbody>
<tr>
<td>R<sub>free</sub></td>
<td>100719</td>
<td>1586 (2.90-2.90)</td>
</tr>
<tr>
<td>Clashscore</td>
<td>112137</td>
<td>1807 (2.90-2.90)</td>
</tr>
<tr>
<td>Ramachandran outliers</td>
<td>110173</td>
<td>1768 (2.90-2.90)</td>
</tr>
<tr>
<td>Sidechain outliers</td>
<td>110143</td>
<td>1770 (2.90-2.90)</td>
</tr>
<tr>
<td>RSRZ outliers</td>
<td>101464</td>
<td>1596 (2.90-2.90)</td>
</tr>
</tbody>
</table>

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments on the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5%. The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.
2 Entry composition

There is only 1 type of molecule in this entry. The entry contains 14266 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

- Molecule 1 is a protein called Hypothetical protein yebU.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Total</th>
<th>Atoms</th>
<th>ZeroOcc</th>
<th>AltConf</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>455</td>
<td></td>
<td>C 3574</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N 2285</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>O 621</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>S 654</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Se 7 7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>454</td>
<td></td>
<td>C 3562</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N 2276</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>O 620</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>S 652</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Se 7 7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>454</td>
<td></td>
<td>C 3562</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N 2276</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>O 620</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>S 652</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Se 7 7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>455</td>
<td></td>
<td>C 3568</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N 2282</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>O 618</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>S 654</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Se 7 7</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

There are 32 discrepancies between the modelled and reference sequences:

<table>
<thead>
<tr>
<th>Chain</th>
<th>Residue</th>
<th>Modelled</th>
<th>Actual</th>
<th>Comment</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>MSE</td>
<td>MET</td>
<td>MODIFIED RESIDUE</td>
<td>UNP P76273</td>
</tr>
<tr>
<td>A</td>
<td>16</td>
<td>MSE</td>
<td>MET</td>
<td>MODIFIED RESIDUE</td>
<td>UNP P76273</td>
</tr>
<tr>
<td>A</td>
<td>20</td>
<td>MSE</td>
<td>MET</td>
<td>MODIFIED RESIDUE</td>
<td>UNP P76273</td>
</tr>
<tr>
<td>A</td>
<td>105</td>
<td>MSE</td>
<td>MET</td>
<td>MODIFIED RESIDUE</td>
<td>UNP P76273</td>
</tr>
<tr>
<td>A</td>
<td>122</td>
<td>MSE</td>
<td>MET</td>
<td>MODIFIED RESIDUE</td>
<td>UNP P76273</td>
</tr>
<tr>
<td>A</td>
<td>139</td>
<td>MSE</td>
<td>MET</td>
<td>MODIFIED RESIDUE</td>
<td>UNP P76273</td>
</tr>
<tr>
<td>A</td>
<td>187</td>
<td>MSE</td>
<td>MET</td>
<td>MODIFIED RESIDUE</td>
<td>UNP P76273</td>
</tr>
<tr>
<td>A</td>
<td>411</td>
<td>MSE</td>
<td>MET</td>
<td>MODIFIED RESIDUE</td>
<td>UNP P76273</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>MSE</td>
<td>MET</td>
<td>MODIFIED RESIDUE</td>
<td>UNP P76273</td>
</tr>
<tr>
<td>B</td>
<td>16</td>
<td>MSE</td>
<td>MET</td>
<td>MODIFIED RESIDUE</td>
<td>UNP P76273</td>
</tr>
<tr>
<td>B</td>
<td>20</td>
<td>MSE</td>
<td>MET</td>
<td>MODIFIED RESIDUE</td>
<td>UNP P76273</td>
</tr>
<tr>
<td>B</td>
<td>105</td>
<td>MSE</td>
<td>MET</td>
<td>MODIFIED RESIDUE</td>
<td>UNP P76273</td>
</tr>
<tr>
<td>B</td>
<td>122</td>
<td>MSE</td>
<td>MET</td>
<td>MODIFIED RESIDUE</td>
<td>UNP P76273</td>
</tr>
<tr>
<td>B</td>
<td>139</td>
<td>MSE</td>
<td>MET</td>
<td>MODIFIED RESIDUE</td>
<td>UNP P76273</td>
</tr>
<tr>
<td>B</td>
<td>187</td>
<td>MSE</td>
<td>MET</td>
<td>MODIFIED RESIDUE</td>
<td>UNP P76273</td>
</tr>
<tr>
<td>B</td>
<td>411</td>
<td>MSE</td>
<td>MET</td>
<td>MODIFIED RESIDUE</td>
<td>UNP P76273</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>MSE</td>
<td>MET</td>
<td>MODIFIED RESIDUE</td>
<td>UNP P76273</td>
</tr>
<tr>
<td>C</td>
<td>16</td>
<td>MSE</td>
<td>MET</td>
<td>MODIFIED RESIDUE</td>
<td>UNP P76273</td>
</tr>
<tr>
<td>C</td>
<td>20</td>
<td>MSE</td>
<td>MET</td>
<td>MODIFIED RESIDUE</td>
<td>UNP P76273</td>
</tr>
<tr>
<td>C</td>
<td>105</td>
<td>MSE</td>
<td>MET</td>
<td>MODIFIED RESIDUE</td>
<td>UNP P76273</td>
</tr>
<tr>
<td>C</td>
<td>122</td>
<td>MSE</td>
<td>MET</td>
<td>MODIFIED RESIDUE</td>
<td>UNP P76273</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Chain</th>
<th>Residue</th>
<th>Modelled</th>
<th>Actual</th>
<th>Comment</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>139</td>
<td>MSE</td>
<td>MET</td>
<td>MODIFIED RESIDUE</td>
<td>UNP P76273</td>
</tr>
<tr>
<td>C</td>
<td>187</td>
<td>MSE</td>
<td>MET</td>
<td>MODIFIED RESIDUE</td>
<td>UNP P76273</td>
</tr>
<tr>
<td>C</td>
<td>411</td>
<td>MSE</td>
<td>MET</td>
<td>MODIFIED RESIDUE</td>
<td>UNP P76273</td>
</tr>
<tr>
<td>D</td>
<td>1</td>
<td>MSE</td>
<td>MET</td>
<td>MODIFIED RESIDUE</td>
<td>UNP P76273</td>
</tr>
<tr>
<td>D</td>
<td>16</td>
<td>MSE</td>
<td>MET</td>
<td>MODIFIED RESIDUE</td>
<td>UNP P76273</td>
</tr>
<tr>
<td>D</td>
<td>20</td>
<td>MSE</td>
<td>MET</td>
<td>MODIFIED RESIDUE</td>
<td>UNP P76273</td>
</tr>
<tr>
<td>D</td>
<td>105</td>
<td>MSE</td>
<td>MET</td>
<td>MODIFIED RESIDUE</td>
<td>UNP P76273</td>
</tr>
<tr>
<td>D</td>
<td>122</td>
<td>MSE</td>
<td>MET</td>
<td>MODIFIED RESIDUE</td>
<td>UNP P76273</td>
</tr>
<tr>
<td>D</td>
<td>139</td>
<td>MSE</td>
<td>MET</td>
<td>MODIFIED RESIDUE</td>
<td>UNP P76273</td>
</tr>
<tr>
<td>D</td>
<td>187</td>
<td>MSE</td>
<td>MET</td>
<td>MODIFIED RESIDUE</td>
<td>UNP P76273</td>
</tr>
<tr>
<td>D</td>
<td>411</td>
<td>MSE</td>
<td>MET</td>
<td>MODIFIED RESIDUE</td>
<td>UNP P76273</td>
</tr>
</tbody>
</table>
3 Residue-property plots

These plots are drawn for all protein, RNA and DNA chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

- Molecule 1: Hypothetical protein yebU

Chain A:

- Molecule 1: Hypothetical protein yebU

Chain B:
• Molecule 1: Hypothetical protein yebU

Chain C:

• Molecule 1: Hypothetical protein yebU

Chain D:
4 Data and refinement statistics

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Space group</td>
<td>P 1</td>
<td>Depositor</td>
</tr>
<tr>
<td>Cell constants</td>
<td>67.71Å 87.13Å 95.05Å</td>
<td>Depositor</td>
</tr>
<tr>
<td>a, b, c, α, β, γ</td>
<td>88.33° 76.79° 90.19°</td>
<td>Depositor</td>
</tr>
<tr>
<td>Resolution (Å)</td>
<td>29.03 – 2.90</td>
<td>Depositor</td>
</tr>
<tr>
<td>% Data completeness</td>
<td>97.8 (29.03-2.90)</td>
<td>Depositor</td>
</tr>
<tr>
<td>(in resolution range)</td>
<td>92.4 (29.03-2.90)</td>
<td>Depositor</td>
</tr>
<tr>
<td>R<sub>merge</sub></td>
<td>(Not available)</td>
<td>Depositor</td>
</tr>
<tr>
<td>R<sub>sym</sub></td>
<td>0.10</td>
<td>Depositor</td>
</tr>
<tr>
<td><I/σ(I)><sup>1</sup></td>
<td>1.87 (at 2.90Å)</td>
<td>Xtriage</td>
</tr>
<tr>
<td>Refinement program</td>
<td>REFMAC 5.2.0003</td>
<td>Depositor</td>
</tr>
<tr>
<td>R, R<sub>free</sub></td>
<td>0.231 , 0.282</td>
<td>Depositor</td>
</tr>
<tr>
<td>R<sub>free</sub> test set</td>
<td>2314 reflections (5.33%)</td>
<td>DCC</td>
</tr>
<tr>
<td>Wilson B-factor (Å<sup>2</sup>)</td>
<td>67.5</td>
<td>Xtriage</td>
</tr>
<tr>
<td>Anisotropy</td>
<td>0.132</td>
<td>Xtriage</td>
</tr>
<tr>
<td>Bulk solvent k<sub>sol</sub>(e/Å<sup>3</sup>), B<sub>sol</sub>(Å<sup>2</sup>)</td>
<td>0.31 , 66.4</td>
<td>EDS</td>
</tr>
<tr>
<td>L-test for twinning<sup>2</sup></td>
<td><L> = 0.48, <L<sup>2</sup> = 0.30</td>
<td>Xtriage</td>
</tr>
<tr>
<td>Estimated twinning fraction</td>
<td>0.093 for -h,k,-l</td>
<td>Xtriage</td>
</tr>
<tr>
<td>F<sub>o</sub>-F<sub>c</sub> correlation</td>
<td>0.93</td>
<td>EDS</td>
</tr>
<tr>
<td>Total number of atoms</td>
<td>14266</td>
<td>wwPDB-VP</td>
</tr>
<tr>
<td>Average B, all atoms (Å<sup>2</sup>)</td>
<td>65.0</td>
<td>wwPDB-VP</td>
</tr>
</tbody>
</table>

Xtriage’s analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 5.57% of the height of the origin peak. No significant pseudotranslation is detected.

¹Intensities estimated from amplitudes.

²Theoretical values of <L>, <L² for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.
5 Model quality

5.1 Standard geometry

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with $|Z| > 5$ is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Bond lengths</th>
<th>Bond angles</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>RMSZ</td>
<td>$</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>0.90</td>
<td>12/3659 (0.3%)</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>0.88</td>
<td>4/3646 (0.1%)</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>1.14</td>
<td>13/3646 (0.4%)</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>1.59</td>
<td>38/3653 (1.0%)</td>
</tr>
<tr>
<td>All</td>
<td>All</td>
<td>1.16</td>
<td>67/14604 (0.5%)</td>
</tr>
</tbody>
</table>

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>#Chirality outliers</th>
<th>#Planarity outliers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>All</td>
<td>All</td>
<td>0</td>
<td>6</td>
</tr>
</tbody>
</table>

All (67) bond length outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(Å)</th>
<th>Ideal(Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>D</td>
<td>335</td>
<td>ARG</td>
<td>NE-CZ</td>
<td>39.64</td>
<td>1.84</td>
<td>1.33</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>420</td>
<td>GLU</td>
<td>CD-OE1</td>
<td>38.71</td>
<td>1.68</td>
<td>1.25</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>214</td>
<td>SER</td>
<td>CB-OG</td>
<td>33.06</td>
<td>1.85</td>
<td>1.42</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>459</td>
<td>ARG</td>
<td>NE-CZ</td>
<td>22.04</td>
<td>1.61</td>
<td>1.33</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>428</td>
<td>ARG</td>
<td>CZ-NH1</td>
<td>20.99</td>
<td>1.60</td>
<td>1.33</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>431</td>
<td>TYR</td>
<td>CE1-CZ</td>
<td>18.62</td>
<td>1.62</td>
<td>1.38</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>431</td>
<td>TYR</td>
<td>CE1-CZ</td>
<td>18.05</td>
<td>1.45</td>
<td>1.25</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>10</td>
<td>ASP</td>
<td>CG-OD2</td>
<td>16.12</td>
<td>1.62</td>
<td>1.25</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>428</td>
<td>ARG</td>
<td>CZ-NH1</td>
<td>14.25</td>
<td>1.51</td>
<td>1.33</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>10</td>
<td>ASP</td>
<td>CG-OD1</td>
<td>13.42</td>
<td>1.56</td>
<td>1.25</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>17</td>
<td>ARG</td>
<td>NE-CZ</td>
<td>13.38</td>
<td>1.50</td>
<td>1.33</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>17</td>
<td>ARG</td>
<td>CZ-NH1</td>
<td>12.28</td>
<td>1.49</td>
<td>1.33</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(Å)</th>
<th>Ideal(Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>D</td>
<td>431</td>
<td>TYR</td>
<td>CG-CD2</td>
<td>12.11</td>
<td>1.54</td>
<td>1.39</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>454</td>
<td>LYS</td>
<td>CE-NZ</td>
<td>11.94</td>
<td>1.78</td>
<td>1.49</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>431</td>
<td>TYR</td>
<td>CG-CD1</td>
<td>11.90</td>
<td>1.54</td>
<td>1.39</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>428</td>
<td>ARG</td>
<td>CZ-NH2</td>
<td>11.69</td>
<td>1.48</td>
<td>1.33</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>17</td>
<td>ARG</td>
<td>CD-NE</td>
<td>11.09</td>
<td>1.65</td>
<td>1.46</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>428</td>
<td>ARG</td>
<td>NE-CZ</td>
<td>10.94</td>
<td>1.47</td>
<td>1.33</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>18</td>
<td>GLU</td>
<td>CD-EZ1</td>
<td>10.62</td>
<td>1.37</td>
<td>1.25</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>216</td>
<td>GLU</td>
<td>CD-OE2</td>
<td>10.60</td>
<td>1.37</td>
<td>1.25</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>428</td>
<td>ARG</td>
<td>CD-NE</td>
<td>10.26</td>
<td>1.63</td>
<td>1.46</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>216</td>
<td>GLU</td>
<td>CD-OE1</td>
<td>10.17</td>
<td>1.36</td>
<td>1.25</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>18</td>
<td>GLU</td>
<td>CD-OE2</td>
<td>9.83</td>
<td>1.36</td>
<td>1.25</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>214</td>
<td>SER</td>
<td>CB-OG</td>
<td>9.72</td>
<td>1.54</td>
<td>1.42</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>428</td>
<td>ARG</td>
<td>NE-CZ</td>
<td>9.63</td>
<td>1.45</td>
<td>1.33</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>208</td>
<td>ASP</td>
<td>CG-OD1</td>
<td>9.17</td>
<td>1.46</td>
<td>1.25</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>17</td>
<td>ARG</td>
<td>CZ-NH1</td>
<td>9.07</td>
<td>1.44</td>
<td>1.33</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>18</td>
<td>GLU</td>
<td>CD-OE1</td>
<td>8.81</td>
<td>1.35</td>
<td>1.25</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>335</td>
<td>ARG</td>
<td>NE-CZ</td>
<td>8.80</td>
<td>1.44</td>
<td>1.33</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>17</td>
<td>ARG</td>
<td>CZ-NH2</td>
<td>-8.59</td>
<td>1.21</td>
<td>1.33</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>459</td>
<td>ARG</td>
<td>CG-CR</td>
<td>8.57</td>
<td>1.73</td>
<td>1.51</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>208</td>
<td>ASP</td>
<td>CG-OD2</td>
<td>8.24</td>
<td>1.44</td>
<td>1.25</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>26</td>
<td>PHE</td>
<td>CG-CR</td>
<td>7.96</td>
<td>1.50</td>
<td>1.38</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>473</td>
<td>LYS</td>
<td>CE-NZ</td>
<td>7.95</td>
<td>1.69</td>
<td>1.49</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>18</td>
<td>GLU</td>
<td>CD-OE1</td>
<td>7.69</td>
<td>1.34</td>
<td>1.25</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>458</td>
<td>SER</td>
<td>CB-OG</td>
<td>7.69</td>
<td>1.52</td>
<td>1.42</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>454</td>
<td>LYS</td>
<td>CD-CR</td>
<td>7.47</td>
<td>1.70</td>
<td>1.51</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>283</td>
<td>LYS</td>
<td>CD-CR</td>
<td>7.46</td>
<td>1.69</td>
<td>1.51</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>17</td>
<td>ARG</td>
<td>NE-CZ</td>
<td>7.17</td>
<td>1.42</td>
<td>1.33</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>339</td>
<td>GLN</td>
<td>CD-OE1</td>
<td>7.13</td>
<td>1.39</td>
<td>1.24</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>428</td>
<td>ARG</td>
<td>CZ-NH2</td>
<td>7.05</td>
<td>1.42</td>
<td>1.33</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>439</td>
<td>ASP</td>
<td>CG-OD1</td>
<td>7.01</td>
<td>1.41</td>
<td>1.25</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>26</td>
<td>PHE</td>
<td>CG-CR</td>
<td>6.86</td>
<td>1.49</td>
<td>1.38</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>27</td>
<td>ASP</td>
<td>CG-OD2</td>
<td>6.75</td>
<td>1.40</td>
<td>1.25</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>10</td>
<td>ASP</td>
<td>CG-OD2</td>
<td>6.57</td>
<td>1.40</td>
<td>1.25</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>27</td>
<td>ASP</td>
<td>CG-OD1</td>
<td>6.50</td>
<td>1.40</td>
<td>1.25</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>428</td>
<td>ARG</td>
<td>CZ-NH1</td>
<td>6.42</td>
<td>1.41</td>
<td>1.33</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>34</td>
<td>GLN</td>
<td>CD-OE1</td>
<td>6.37</td>
<td>1.38</td>
<td>1.24</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>26</td>
<td>PHE</td>
<td>CE1-CR</td>
<td>6.28</td>
<td>1.49</td>
<td>1.37</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>433</td>
<td>GLN</td>
<td>CD-OE1</td>
<td>6.25</td>
<td>1.37</td>
<td>1.24</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>333</td>
<td>LYS</td>
<td>CE-NZ</td>
<td>6.23</td>
<td>1.64</td>
<td>1.49</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>26</td>
<td>PHE</td>
<td>CE2-CR</td>
<td>6.21</td>
<td>1.49</td>
<td>1.37</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>18</td>
<td>GLU</td>
<td>CD-OE2</td>
<td>6.20</td>
<td>1.32</td>
<td>1.25</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>217</td>
<td>SER</td>
<td>CB-OG</td>
<td>6.12</td>
<td>1.50</td>
<td>1.42</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(Å)</th>
<th>Ideal(Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>216</td>
<td>GLU</td>
<td>CG-CD</td>
<td>6.08</td>
<td>1.61</td>
<td>1.51</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>28</td>
<td>ASP</td>
<td>CG-OD2</td>
<td>6.05</td>
<td>1.39</td>
<td>1.25</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>423</td>
<td>GLU</td>
<td>CD-OE1</td>
<td>5.95</td>
<td>1.32</td>
<td>1.25</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>428</td>
<td>ARG</td>
<td>CG-CD</td>
<td>5.93</td>
<td>1.66</td>
<td>1.51</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>71</td>
<td>GLU</td>
<td>CZ-NH2</td>
<td>5.56</td>
<td>1.31</td>
<td>1.25</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>428</td>
<td>ARG</td>
<td>CG-CD</td>
<td>5.93</td>
<td>1.66</td>
<td>1.51</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>431</td>
<td>TYR</td>
<td>CG-CD1</td>
<td>5.39</td>
<td>1.46</td>
<td>1.39</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>431</td>
<td>TYR</td>
<td>CE2-CZ</td>
<td>5.20</td>
<td>1.45</td>
<td>1.38</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>10</td>
<td>ASP</td>
<td>CG-OD1</td>
<td>5.10</td>
<td>1.37</td>
<td>1.25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

All (70) bond angle outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(°)</th>
<th>Ideal(°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C</td>
<td>428</td>
<td>ARG</td>
<td>NE-CZ-NH2</td>
<td>-30.98</td>
<td>104.81</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>428</td>
<td>ARG</td>
<td>NE-CZ-NH1</td>
<td>30.08</td>
<td>135.34</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>17</td>
<td>ARG</td>
<td>NE-CZ-NH2</td>
<td>22.80</td>
<td>131.70</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>459</td>
<td>ARG</td>
<td>NE-CZ-NH2</td>
<td>-19.50</td>
<td>110.55</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>335</td>
<td>ARG</td>
<td>NE-CZ-NH2</td>
<td>-19.42</td>
<td>110.59</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>428</td>
<td>ARG</td>
<td>NE-CZ-NH2</td>
<td>-17.71</td>
<td>111.44</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>17</td>
<td>ARG</td>
<td>NE-CZ-NH1</td>
<td>13.70</td>
<td>127.15</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>428</td>
<td>ARG</td>
<td>NE-CZ-NH1</td>
<td>11.95</td>
<td>126.28</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>335</td>
<td>ARG</td>
<td>NE-CZ-NH1</td>
<td>11.91</td>
<td>126.25</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>428</td>
<td>ARG</td>
<td>CD-NE-CZ</td>
<td>-10.66</td>
<td>108.68</td>
<td>123.60</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>431</td>
<td>TYR</td>
<td>CB-CG-CD1</td>
<td>-9.94</td>
<td>115.04</td>
<td>121.00</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>420</td>
<td>GLU</td>
<td>OE1-CD-OE2</td>
<td>9.28</td>
<td>134.43</td>
<td>123.30</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>429</td>
<td>ASP</td>
<td>CB-CG-OD2</td>
<td>8.86</td>
<td>126.28</td>
<td>118.30</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>471</td>
<td>ASP</td>
<td>CB-CG-OD2</td>
<td>8.45</td>
<td>125.90</td>
<td>118.30</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>17</td>
<td>ARG</td>
<td>NH1-CZ-NH2</td>
<td>-8.39</td>
<td>110.17</td>
<td>119.40</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>52</td>
<td>ASP</td>
<td>CB-CG-OD2</td>
<td>7.81</td>
<td>125.33</td>
<td>118.30</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>206</td>
<td>ASP</td>
<td>CB-CG-OD2</td>
<td>7.63</td>
<td>125.17</td>
<td>118.30</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>409</td>
<td>ASP</td>
<td>CB-CG-OD2</td>
<td>7.42</td>
<td>124.97</td>
<td>118.30</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>230</td>
<td>ASP</td>
<td>CB-CG-OD2</td>
<td>7.38</td>
<td>124.94</td>
<td>118.30</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>454</td>
<td>LYS</td>
<td>CD-CE-NZ</td>
<td>-7.23</td>
<td>95.07</td>
<td>111.70</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>208</td>
<td>ASP</td>
<td>CB-CG-OD2</td>
<td>7.23</td>
<td>124.81</td>
<td>118.30</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>276</td>
<td>ASP</td>
<td>CB-CG-OD2</td>
<td>7.16</td>
<td>124.75</td>
<td>118.30</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>189</td>
<td>ASP</td>
<td>CB-CG-OD2</td>
<td>7.14</td>
<td>124.73</td>
<td>118.30</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>420</td>
<td>GLU</td>
<td>CG-CD-OE1</td>
<td>-7.00</td>
<td>104.31</td>
<td>118.30</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>230</td>
<td>ASP</td>
<td>CB-CG-OD2</td>
<td>6.89</td>
<td>124.50</td>
<td>118.30</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(°)</th>
<th>Ideal(°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C</td>
<td>230</td>
<td>ASP</td>
<td>CB-CG-OD2</td>
<td>6.79</td>
<td>124.41</td>
<td>118.30</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>431</td>
<td>TYR</td>
<td>CZ-CE2-CD2</td>
<td>-6.75</td>
<td>113.72</td>
<td>119.80</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>28</td>
<td>ASP</td>
<td>CB-CG-OD2</td>
<td>6.68</td>
<td>124.31</td>
<td>118.30</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>334</td>
<td>ASP</td>
<td>CB-CG-OD2</td>
<td>6.67</td>
<td>124.30</td>
<td>118.30</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>352</td>
<td>ASP</td>
<td>CB-CA-C</td>
<td>-6.58</td>
<td>97.23</td>
<td>110.40</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>30</td>
<td>LEU</td>
<td>CA-CB-CG</td>
<td>6.58</td>
<td>130.43</td>
<td>115.30</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>138</td>
<td>ARG</td>
<td>NE-CZ-NH1</td>
<td>6.54</td>
<td>123.57</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>106</td>
<td>LEU</td>
<td>CA-CB-CG</td>
<td>6.42</td>
<td>130.06</td>
<td>115.30</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>206</td>
<td>ASP</td>
<td>CB-CG-OD2</td>
<td>6.41</td>
<td>124.07</td>
<td>118.30</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>208</td>
<td>ASP</td>
<td>CB-CG-OD2</td>
<td>6.38</td>
<td>124.04</td>
<td>118.30</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>123</td>
<td>ASP</td>
<td>CB-CG-OD2</td>
<td>6.26</td>
<td>123.93</td>
<td>118.30</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>428</td>
<td>ARG</td>
<td>NE-CZ-NH1</td>
<td>-6.16</td>
<td>117.22</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>164</td>
<td>ARG</td>
<td>NE-CZ-NH1</td>
<td>-6.14</td>
<td>117.23</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>103</td>
<td>SER</td>
<td>N-CA-CB</td>
<td>-6.12</td>
<td>101.31</td>
<td>110.50</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>10</td>
<td>ASP</td>
<td>CB-CG-OD1</td>
<td>6.09</td>
<td>123.78</td>
<td>118.30</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>299</td>
<td>ASP</td>
<td>CB-CG-OD2</td>
<td>6.08</td>
<td>123.78</td>
<td>118.30</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>429</td>
<td>ASP</td>
<td>CB-CG-OD2</td>
<td>6.08</td>
<td>123.77</td>
<td>118.30</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>39</td>
<td>ARG</td>
<td>NE-CZ-NH1</td>
<td>6.07</td>
<td>123.34</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>439</td>
<td>ASP</td>
<td>CB-CG-OD2</td>
<td>5.97</td>
<td>123.68</td>
<td>118.30</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>374</td>
<td>LEU</td>
<td>CA-CB-CG</td>
<td>5.94</td>
<td>128.97</td>
<td>115.30</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>106</td>
<td>LEU</td>
<td>CB-CG-CD2</td>
<td>-5.92</td>
<td>100.93</td>
<td>111.00</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>10</td>
<td>ASP</td>
<td>CB-CG-OD1</td>
<td>-5.89</td>
<td>113.00</td>
<td>118.30</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>176</td>
<td>ASP</td>
<td>CB-CG-OD2</td>
<td>5.73</td>
<td>123.45</td>
<td>118.30</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>27</td>
<td>ASP</td>
<td>CB-CG-OD2</td>
<td>5.69</td>
<td>123.42</td>
<td>118.30</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>335</td>
<td>ARG</td>
<td>NE-CZ-NH1</td>
<td>5.68</td>
<td>123.14</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>27</td>
<td>ASP</td>
<td>CB-CG-OD2</td>
<td>5.55</td>
<td>123.30</td>
<td>118.30</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>208</td>
<td>ASP</td>
<td>CB-CG-OD2</td>
<td>5.52</td>
<td>123.27</td>
<td>118.30</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>334</td>
<td>ASP</td>
<td>CB-CG-OD2</td>
<td>5.45</td>
<td>123.20</td>
<td>118.30</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>206</td>
<td>ASP</td>
<td>CB-CG-OD2</td>
<td>5.44</td>
<td>123.20</td>
<td>118.30</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>471</td>
<td>ASP</td>
<td>CB-CG-OD2</td>
<td>5.38</td>
<td>123.14</td>
<td>118.30</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>460</td>
<td>LEU</td>
<td>CA-CB-CG</td>
<td>5.33</td>
<td>127.55</td>
<td>115.30</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>267</td>
<td>ASP</td>
<td>CB-CG-OD2</td>
<td>5.31</td>
<td>123.08</td>
<td>118.30</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>352</td>
<td>ASP</td>
<td>CB-CG-OD2</td>
<td>-5.29</td>
<td>113.53</td>
<td>118.30</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>194</td>
<td>ASP</td>
<td>CB-CG-OD1</td>
<td>5.26</td>
<td>123.03</td>
<td>118.30</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>123</td>
<td>ASP</td>
<td>CB-CG-OD2</td>
<td>5.25</td>
<td>123.02</td>
<td>118.30</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>352</td>
<td>ASP</td>
<td>CB-CG-OD2</td>
<td>5.24</td>
<td>123.02</td>
<td>118.30</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>52</td>
<td>ASP</td>
<td>CB-CG-OD2</td>
<td>5.24</td>
<td>123.02</td>
<td>118.30</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>361</td>
<td>ASP</td>
<td>CB-CG-OD2</td>
<td>5.21</td>
<td>122.99</td>
<td>118.30</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>335</td>
<td>ARG</td>
<td>CG-CD-NE</td>
<td>5.21</td>
<td>122.74</td>
<td>111.80</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>440</td>
<td>ASP</td>
<td>CB-CG-OD2</td>
<td>5.17</td>
<td>122.95</td>
<td>118.30</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>431</td>
<td>TYR</td>
<td>CB-CG-CD2</td>
<td>5.16</td>
<td>124.10</td>
<td>121.00</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>440</td>
<td>ASP</td>
<td>CB-CG-OD2</td>
<td>5.15</td>
<td>122.94</td>
<td>118.30</td>
</tr>
</tbody>
</table>
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(°)</th>
<th>Ideal(°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C</td>
<td>276</td>
<td>ASP</td>
<td>CB-CG-OD2</td>
<td>5.14</td>
<td>122.93</td>
<td>118.30</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>120</td>
<td>ARG</td>
<td>NE-CZ-NH1</td>
<td>-5.08</td>
<td>117.76</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>308</td>
<td>LEU</td>
<td>CA-CB-CG</td>
<td>5.06</td>
<td>126.93</td>
<td>115.30</td>
</tr>
</tbody>
</table>

There are no chirality outliers.

All (6) planarity outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>318</td>
<td>PRO</td>
<td>Peptide</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>318</td>
<td>PRO</td>
<td>Peptide</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>323</td>
<td>LYS</td>
<td>Peptide</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>318</td>
<td>PRO</td>
<td>Peptide</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>318</td>
<td>PRO</td>
<td>Peptide</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>459</td>
<td>ARG</td>
<td>Sidechain</td>
</tr>
</tbody>
</table>

5.2 Too-close contacts

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry related clashes.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Non-H</th>
<th>H(model)</th>
<th>H(added)</th>
<th>Clashes</th>
<th>Symm-Clashes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>3574</td>
<td>0</td>
<td>3513</td>
<td>132</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>3562</td>
<td>0</td>
<td>3504</td>
<td>150</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>3562</td>
<td>0</td>
<td>3504</td>
<td>160</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>3568</td>
<td>0</td>
<td>3502</td>
<td>171</td>
<td>0</td>
</tr>
<tr>
<td>All</td>
<td>All</td>
<td>14266</td>
<td>0</td>
<td>14023</td>
<td>611</td>
<td>0</td>
</tr>
</tbody>
</table>

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 22.

All (611) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:D:473:LYS:NZ</td>
<td>1:D:473:LYS:CE</td>
<td>1.68</td>
<td>1.54</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:D:335:ARG:NE</td>
<td>1:D:335:ARG:CZ</td>
<td>1.84</td>
<td>1.38</td>
</tr>
<tr>
<td>1:C:411:MSE:SE</td>
<td>1:C:411:MSE:CE</td>
<td>2.23</td>
<td>1.36</td>
</tr>
<tr>
<td>1:D:420:GLU:CD</td>
<td>1:D:420:GLU:OE1</td>
<td>1.68</td>
<td>1.29</td>
</tr>
<tr>
<td>1:B:318:PRO:O</td>
<td>1:B:320:PRO:HD3</td>
<td>1.33</td>
<td>1.28</td>
</tr>
<tr>
<td>1:D:318:PRO:O</td>
<td>1:D:320:PRO:HD3</td>
<td>1.31</td>
<td>1.27</td>
</tr>
<tr>
<td>1:B:341:ARG:HG2</td>
<td>1:B:351:TRP:HZ2</td>
<td>1.01</td>
<td>1.09</td>
</tr>
<tr>
<td>1:B:122:MSE:HE1</td>
<td>1:B:180:PHE:CE2</td>
<td>1.88</td>
<td>1.09</td>
</tr>
<tr>
<td>1:B:341:ARG:HG2</td>
<td>1:B:351:TRP:CZ2</td>
<td>1.90</td>
<td>1.06</td>
</tr>
<tr>
<td>1:B:335:ARG:HH11</td>
<td>1:B:335:ARG:CG</td>
<td>1.72</td>
<td>1.02</td>
</tr>
<tr>
<td>1:B:335:ARG:NH1</td>
<td>1:B:335:ARG:HG3</td>
<td>1.62</td>
<td>1.02</td>
</tr>
<tr>
<td>1:C:335:ARG:HB3</td>
<td>1:C:335:ARG:HH11</td>
<td>1.20</td>
<td>1.00</td>
</tr>
<tr>
<td>1:A:223:ALA:HA</td>
<td>1:A:226:ARG:NH1</td>
<td>1.78</td>
<td>0.97</td>
</tr>
<tr>
<td>1:C:108:VAL:HG11</td>
<td>1:C:134:GLN:HG2</td>
<td>1.46</td>
<td>0.96</td>
</tr>
<tr>
<td>1:B:416:LEU:HD22</td>
<td>1:B:420:GLU:HB3</td>
<td>1.47</td>
<td>0.96</td>
</tr>
<tr>
<td>1:B:94:SER:HB3</td>
<td>1:B:450:ILE:CD1</td>
<td>1.95</td>
<td>0.96</td>
</tr>
<tr>
<td>1:B:341:ARG:CG</td>
<td>1:B:351:TRP:HZ2</td>
<td>1.78</td>
<td>0.96</td>
</tr>
<tr>
<td>1:D:106:LEU:HB3</td>
<td>1:D:107:PRO:HD3</td>
<td>1.48</td>
<td>0.95</td>
</tr>
<tr>
<td>1:B:225:GLN:HE22</td>
<td>1:B:253:GLU:HB3</td>
<td>1.32</td>
<td>0.95</td>
</tr>
<tr>
<td>1:C:341:ARG:HD3</td>
<td>1:C:351:TRP:CH2</td>
<td>2.02</td>
<td>0.94</td>
</tr>
<tr>
<td>1:B:29:PHE:HA</td>
<td>1:B:296:GLN:HG2</td>
<td>1.47</td>
<td>0.94</td>
</tr>
<tr>
<td>1:B:335:ARG:HG3</td>
<td>1:B:335:ARG:HH11</td>
<td>0.81</td>
<td>0.94</td>
</tr>
<tr>
<td>1:D:318:PRO:O</td>
<td>1:D:320:PRO:CD</td>
<td>2.17</td>
<td>0.92</td>
</tr>
<tr>
<td>1:A:225:GLN:OE1</td>
<td>1:A:253:GLU:HG2</td>
<td>1.71</td>
<td>0.91</td>
</tr>
<tr>
<td>1:B:399:HIS:CE1</td>
<td>1:B:403:ILE:HD11</td>
<td>2.06</td>
<td>0.91</td>
</tr>
<tr>
<td>1:C:176:ASP:O</td>
<td>1:C:178:ARG:N</td>
<td>2.06</td>
<td>0.88</td>
</tr>
<tr>
<td>1:C:318:PRO:O</td>
<td>1:C:320:PRO:CD</td>
<td>2.21</td>
<td>0.88</td>
</tr>
<tr>
<td>1:C:352:ASP:HB3</td>
<td>1:C:354:ASN:H</td>
<td>1.39</td>
<td>0.88</td>
</tr>
<tr>
<td>1:C:236:LEU:HD11</td>
<td>1:C:240:GLY:HA3</td>
<td>1.56</td>
<td>0.87</td>
</tr>
<tr>
<td>1:D:226:ARG:HG3</td>
<td>1:D:226:ARG:NH1</td>
<td>1.88</td>
<td>0.86</td>
</tr>
<tr>
<td>1:B:425:TYR:OH</td>
<td>1:B:450:ILE:CD1</td>
<td>2.25</td>
<td>0.85</td>
</tr>
<tr>
<td>1:A:416:LEU:HD22</td>
<td>1:A:420:GLU:HB3</td>
<td>1.58</td>
<td>0.84</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:C:20:MSE:HE3</td>
<td>1:C:21:PRO:HD2</td>
<td>1.59</td>
<td>0.83</td>
</tr>
<tr>
<td>1:B:176:ASP:O</td>
<td>1:B:178:ARG:N</td>
<td>2.11</td>
<td>0.83</td>
</tr>
<tr>
<td>1:A:223:ALA:HA</td>
<td>1:A:226:ARG:HH11</td>
<td>1.43</td>
<td>0.82</td>
</tr>
<tr>
<td>1:D:176:ASP:O</td>
<td>1:D:178:ARG:N</td>
<td>2.13</td>
<td>0.82</td>
</tr>
<tr>
<td>1:D:318:PRO:C</td>
<td>1:D:320:PRO:HD3</td>
<td>1.98</td>
<td>0.82</td>
</tr>
<tr>
<td>1:B:318:PRO:O</td>
<td>1:B:320:PRO:CD</td>
<td>2.25</td>
<td>0.81</td>
</tr>
<tr>
<td>1:D:226:ARG:HH11</td>
<td>1:D:226:ARG:HG3</td>
<td>1.42</td>
<td>0.81</td>
</tr>
<tr>
<td>1:D:103:SER:HB2</td>
<td>1:D:301:GLU:OE2</td>
<td>1.81</td>
<td>0.81</td>
</tr>
<tr>
<td>1:D:324:VAL:HG12</td>
<td>1:D:379:ARG:HE</td>
<td>1.43</td>
<td>0.81</td>
</tr>
<tr>
<td>1:B:184:VAL:HG12</td>
<td>1:B:187:MSE:HB2</td>
<td>1.60</td>
<td>0.81</td>
</tr>
<tr>
<td>1:B:131:LYS:O</td>
<td>1:B:135:ILE:HG12</td>
<td>1.79</td>
<td>0.81</td>
</tr>
<tr>
<td>1:D:185:PRO:O</td>
<td>1:D:235:ALA:HA</td>
<td>1.81</td>
<td>0.81</td>
</tr>
<tr>
<td>1:B:16:MSE:HE1</td>
<td>1:B:249:LEU:HB2</td>
<td>1.63</td>
<td>0.80</td>
</tr>
<tr>
<td>1:C:341:ARG:HD3</td>
<td>1:C:351:TRP:HH2</td>
<td>1.45</td>
<td>0.80</td>
</tr>
<tr>
<td>1:C:210:LEU:O</td>
<td>1:C:212:ASN:N</td>
<td>2.15</td>
<td>0.80</td>
</tr>
<tr>
<td>1:C:223:ALA:HA</td>
<td>1:C:226:ARG:HH12</td>
<td>1.47</td>
<td>0.80</td>
</tr>
<tr>
<td>1:D:363:GLU:HG2</td>
<td>1:D:386:LYS:HE3</td>
<td>1.64</td>
<td>0.79</td>
</tr>
<tr>
<td>1:A:176:ASP:O</td>
<td>1:A:178:ARG:N</td>
<td>2.16</td>
<td>0.79</td>
</tr>
<tr>
<td>1:A:185:PRO:O</td>
<td>1:A:235:ALA:HA</td>
<td>1.83</td>
<td>0.79</td>
</tr>
<tr>
<td>1:B:367:PHE:CE1</td>
<td>1:B:383:LEU:HB2</td>
<td>2.17</td>
<td>0.79</td>
</tr>
<tr>
<td>1:A:410:ASN:OD1</td>
<td>1:A:412:ASN:N</td>
<td>2.16</td>
<td>0.78</td>
</tr>
<tr>
<td>1:A:318:PRO:C</td>
<td>1:A:320:PRO:HD3</td>
<td>2.02</td>
<td>0.78</td>
</tr>
<tr>
<td>1:B:352:ASP:HB2</td>
<td>1:B:354:ASN:H</td>
<td>1.49</td>
<td>0.77</td>
</tr>
<tr>
<td>1:C:185:PRO:O</td>
<td>1:C:235:ALA:HA</td>
<td>1.83</td>
<td>0.77</td>
</tr>
<tr>
<td>1:D:178:ARG:HH11</td>
<td>1:D:178:ARG:HG3</td>
<td>1.46</td>
<td>0.77</td>
</tr>
<tr>
<td>1:C:127:ALA:HB1</td>
<td>1:C:154:ARG:HG2</td>
<td>1.67</td>
<td>0.77</td>
</tr>
<tr>
<td>1:B:219:GLN:OE1</td>
<td>1:B:219:GLN:HA</td>
<td>1.84</td>
<td>0.77</td>
</tr>
<tr>
<td>1:D:122:MSE:CE</td>
<td>1:D:146:LEU:HD22</td>
<td>2.15</td>
<td>0.77</td>
</tr>
<tr>
<td>1:A:29:PHE:HA</td>
<td>1:A:296:GLN:HG2</td>
<td>1.66</td>
<td>0.77</td>
</tr>
<tr>
<td>1:C:26:PHE:O</td>
<td>1:C:29:PHE:HB3</td>
<td>1.84</td>
<td>0.76</td>
</tr>
<tr>
<td>1:D:351:TRP:HE3</td>
<td>1:D:352:ASP:O</td>
<td>1.67</td>
<td>0.76</td>
</tr>
<tr>
<td>1:A:221:ILE:O</td>
<td>1:A:225:GLN:HG3</td>
<td>1.86</td>
<td>0.76</td>
</tr>
<tr>
<td>1:D:429:ASP:OD1</td>
<td>1:D:461:LYS:HA</td>
<td>1.86</td>
<td>0.75</td>
</tr>
<tr>
<td>1:B:122:MSE:HE1</td>
<td>1:B:180:PHE:CZ</td>
<td>2.21</td>
<td>0.75</td>
</tr>
<tr>
<td>1:B:351:TRP:HE3</td>
<td>1:B:351:TRP:O</td>
<td>1.69</td>
<td>0.75</td>
</tr>
<tr>
<td>1:C:223:ALA:HA</td>
<td>1:C:226:ARG:NH1</td>
<td>2.02</td>
<td>0.75</td>
</tr>
<tr>
<td>1:B:466:ARG:HA</td>
<td>1:B:469:VAL:HG13</td>
<td>1.67</td>
<td>0.75</td>
</tr>
<tr>
<td>1:C:318:PRO:C</td>
<td>1:C:320:PRO:HD3</td>
<td>2.06</td>
<td>0.75</td>
</tr>
<tr>
<td>1:D:416:LEU:HD22</td>
<td>1:D:420:GLU:HB3</td>
<td>1.67</td>
<td>0.75</td>
</tr>
<tr>
<td>1:A:445:PHE:HB3</td>
<td>1:A:450:ILE:CD1</td>
<td>2.17</td>
<td>0.74</td>
</tr>
<tr>
<td>1:D:341:ARG:CG</td>
<td>1:D:351:TRP:HZ2</td>
<td>2.01</td>
<td>0.74</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:B:318:PRO:C</td>
<td>1:B:320:PRO:HD3</td>
<td>2.07</td>
<td>0.74</td>
</tr>
<tr>
<td>1:B:341:ARG:NH2</td>
<td>1:B:351:TRP:CH2</td>
<td>2.56</td>
<td>0.74</td>
</tr>
<tr>
<td>1:A:103:SER:HB2</td>
<td>1:A:301:GLU:OE1</td>
<td>1.87</td>
<td>0.74</td>
</tr>
<tr>
<td>1:A:219:GLN:OE1</td>
<td>1:A:219:GLN:HA</td>
<td>1.85</td>
<td>0.74</td>
</tr>
<tr>
<td>1:D:226:ARG:HH11</td>
<td>1:D:226:ARG:CG</td>
<td>2.01</td>
<td>0.73</td>
</tr>
<tr>
<td>1:C:246:THR:OG1</td>
<td>1:C:254:ASN:ND2</td>
<td>2.20</td>
<td>0.73</td>
</tr>
<tr>
<td>1:B:362:LYS:HD3</td>
<td>1:B:362:LYS:N</td>
<td>2.04</td>
<td>0.73</td>
</tr>
<tr>
<td>1:C:341:ARG:HB2</td>
<td>1:C:351:TRP:CZ2</td>
<td>2.24</td>
<td>0.73</td>
</tr>
<tr>
<td>1:D:127:ALA:HB2</td>
<td>1:D:149:GLU:HG3</td>
<td>1.70</td>
<td>0.73</td>
</tr>
<tr>
<td>1:A:197:CY5:HB2</td>
<td>1:A:248:THR:CG2</td>
<td>2.19</td>
<td>0.73</td>
</tr>
<tr>
<td>1:A:176:ASP:N</td>
<td>1:A:176:ASP:OD1</td>
<td>2.22</td>
<td>0.73</td>
</tr>
<tr>
<td>1:C:335:ARG:HH11</td>
<td>1:C:335:ARG:CB</td>
<td>2.01</td>
<td>0.73</td>
</tr>
<tr>
<td>1:D:153:SER:HA</td>
<td>1:D:156:LYS:HE3</td>
<td>1.71</td>
<td>0.72</td>
</tr>
<tr>
<td>1:D:225:GLN:HE22</td>
<td>1:D:253:GLU:HG2</td>
<td>1.54</td>
<td>0.72</td>
</tr>
<tr>
<td>1:D:341:ARG:HG2</td>
<td>1:D:351:TRP:CZ2</td>
<td>2.23</td>
<td>0.72</td>
</tr>
<tr>
<td>1:B:26:PHE:O</td>
<td>1:B:29:PHE:HB3</td>
<td>1.89</td>
<td>0.72</td>
</tr>
<tr>
<td>1:D:270:GLU:OE1</td>
<td>1:D:309:ARG:NH1</td>
<td>2.22</td>
<td>0.72</td>
</tr>
<tr>
<td>1:B:425:TYR:OH</td>
<td>1:B:450:ILE:HD13</td>
<td>1.90</td>
<td>0.72</td>
</tr>
<tr>
<td>1:D:150:PHE:CE2</td>
<td>1:D:176:ASP:HB3</td>
<td>2.25</td>
<td>0.72</td>
</tr>
<tr>
<td>1:D:29:PHE:HA</td>
<td>1:D:296:GLN:CG</td>
<td>2.19</td>
<td>0.72</td>
</tr>
<tr>
<td>1:B:210:LEU:O</td>
<td>1:B:212:ASN:N</td>
<td>2.22</td>
<td>0.71</td>
</tr>
<tr>
<td>1:C:367:PHE:CE1</td>
<td>1:C:383:LEU:HB2</td>
<td>2.25</td>
<td>0.71</td>
</tr>
<tr>
<td>1:B:108:VAL:HG11</td>
<td>1:B:134:GLN:HG2</td>
<td>1.73</td>
<td>0.71</td>
</tr>
<tr>
<td>1:C:338:GLY:HA2</td>
<td>1:C:341:ARG:NH2</td>
<td>2.06</td>
<td>0.71</td>
</tr>
<tr>
<td>1:D:106:LEU:HB3</td>
<td>1:D:107:PRO:CD</td>
<td>2.19</td>
<td>0.70</td>
</tr>
<tr>
<td>1:D:150:PHE:HE2</td>
<td>1:D:176:ASP:HB3</td>
<td>1.55</td>
<td>0.70</td>
</tr>
<tr>
<td>1:C:29:PHE:HB2</td>
<td>1:C:296:GLN:NE2</td>
<td>2.06</td>
<td>0.69</td>
</tr>
<tr>
<td>1:D:357:LEU:HG</td>
<td>1:D:366:LEU:HD23</td>
<td>1.74</td>
<td>0.69</td>
</tr>
<tr>
<td>1:C:369:VAL:HA</td>
<td>1:C:372:GLU:OE2</td>
<td>1.92</td>
<td>0.69</td>
</tr>
<tr>
<td>1:C:158:LEU:HD22</td>
<td>1:C:172:LEU:HD21</td>
<td>1.75</td>
<td>0.69</td>
</tr>
<tr>
<td>1:A:198:SER:HB3</td>
<td>1:A:218:ASN:HD21</td>
<td>1.57</td>
<td>0.69</td>
</tr>
<tr>
<td>1:A:7:TYR:CD2</td>
<td>1:A:211:LYS:HD2</td>
<td>2.28</td>
<td>0.69</td>
</tr>
<tr>
<td>1:C:16:MSE:HE1</td>
<td>1:C:249:LEU:HB2</td>
<td>1.75</td>
<td>0.68</td>
</tr>
<tr>
<td>1:D:210:LEU:O</td>
<td>1:D:212:ASN:N</td>
<td>2.26</td>
<td>0.68</td>
</tr>
<tr>
<td>1:A:165:CY3:HB2</td>
<td>1:A:167:ILE:HD12</td>
<td>1.74</td>
<td>0.68</td>
</tr>
<tr>
<td>1:A:196:PRO:O</td>
<td>1:A:225:GLN:NE2</td>
<td>2.27</td>
<td>0.68</td>
</tr>
<tr>
<td>1:C:29:PHE:CA</td>
<td>1:C:296:GLN:HG2</td>
<td>2.18</td>
<td>0.68</td>
</tr>
<tr>
<td>1:D:29:PHE:HA</td>
<td>1:D:296:GLN:HG2</td>
<td>1.75</td>
<td>0.68</td>
</tr>
<tr>
<td>1:D:165:CY3:HB2</td>
<td>1:D:167:ILE:HD12</td>
<td>1.75</td>
<td>0.68</td>
</tr>
<tr>
<td>1:B:224:THR:HG22</td>
<td>1:B:228:LEU:HD12</td>
<td>1.74</td>
<td>0.68</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:B:324:VAL:HG12</td>
<td>1:B:324:VAL:O</td>
<td>1.94</td>
<td>0.68</td>
</tr>
<tr>
<td>1:C:236:LEU:O</td>
<td>1:C:310:LYS:HE3</td>
<td>1.92</td>
<td>0.68</td>
</tr>
<tr>
<td>1:A:454:LYS:NZ</td>
<td>1:A:454:LYS:CD</td>
<td>2.57</td>
<td>0.67</td>
</tr>
<tr>
<td>1:B:176:ASP:CG</td>
<td>1:B:176:ASP:O</td>
<td>2.32</td>
<td>0.67</td>
</tr>
<tr>
<td>1:B:399:HIS:CE1</td>
<td>1:B:403:ILE:CD1</td>
<td>2.77</td>
<td>0.67</td>
</tr>
<tr>
<td>1:C:127:ALA:HB2</td>
<td>1:C:149:GLU:HG3</td>
<td>1.74</td>
<td>0.67</td>
</tr>
<tr>
<td>1:A:210:LEU:O</td>
<td>1:A:212:ASN:N</td>
<td>2.28</td>
<td>0.67</td>
</tr>
<tr>
<td>1:C:106:LEU:HB3</td>
<td>1:C:107:PRO:HD3</td>
<td>1.76</td>
<td>0.67</td>
</tr>
<tr>
<td>1:A:45:THR:HG22</td>
<td>1:A:45:THR:O</td>
<td>1.93</td>
<td>0.67</td>
</tr>
<tr>
<td>1:B:242:LEU:HD23</td>
<td>1:B:308:LEU:HD11</td>
<td>1.76</td>
<td>0.67</td>
</tr>
<tr>
<td>1:C:172:LEU:HD12</td>
<td>1:C:382:ARG:HB3</td>
<td>1.76</td>
<td>0.67</td>
</tr>
<tr>
<td>1:B:102:ALA:HA</td>
<td>1:B:105:MSE:HE3</td>
<td>1.76</td>
<td>0.67</td>
</tr>
<tr>
<td>1:D:127:ALA:HB1</td>
<td>1:D:154:ARG:HG2</td>
<td>1.76</td>
<td>0.67</td>
</tr>
<tr>
<td>1:B:122:MSE:CE</td>
<td>1:B:146:LEU:HD22</td>
<td>2.25</td>
<td>0.67</td>
</tr>
<tr>
<td>1:B:184:VAL:HG12</td>
<td>1:B:187:MSE:CB</td>
<td>2.25</td>
<td>0.67</td>
</tr>
<tr>
<td>1:A:439:ASP:HB3</td>
<td>1:A:455:ARG:HE</td>
<td>1.61</td>
<td>0.66</td>
</tr>
<tr>
<td>1:C:156:LYS:O</td>
<td>1:C:156:LYS:HE2</td>
<td>1.95</td>
<td>0.66</td>
</tr>
<tr>
<td>1:D:96:LEU:HD21</td>
<td>1:D:448:GLN:HG3</td>
<td>1.78</td>
<td>0.66</td>
</tr>
<tr>
<td>1:C:328:PRO:O</td>
<td>1:C:360:ARG:HG3</td>
<td>1.96</td>
<td>0.66</td>
</tr>
<tr>
<td>1:D:178:ARG:HH11</td>
<td>1:D:178:ARG:CG</td>
<td>2.09</td>
<td>0.65</td>
</tr>
<tr>
<td>1:B:176:ASP:OD1</td>
<td>1:B:176:ASP:O</td>
<td>2.14</td>
<td>0.65</td>
</tr>
<tr>
<td>1:B:414:PHE:CE2</td>
<td>1:B:436:PRO:HD3</td>
<td>2.30</td>
<td>0.65</td>
</tr>
<tr>
<td>1:D:226:ARG:O</td>
<td>1:D:229:ILE:HG22</td>
<td>1.96</td>
<td>0.65</td>
</tr>
<tr>
<td>1:A:466:ARG:O</td>
<td>1:A:469:VAL:HG12</td>
<td>1.97</td>
<td>0.65</td>
</tr>
<tr>
<td>1:C:230:ASP:OD2</td>
<td>1:C:265:TYR:OH</td>
<td>2.09</td>
<td>0.65</td>
</tr>
<tr>
<td>1:D:429:ASP:OD1</td>
<td>1:D:462:ASN:N</td>
<td>2.27</td>
<td>0.65</td>
</tr>
<tr>
<td>1:B:341:ARG:CG</td>
<td>1:B:351:TRP:CZ2</td>
<td>2.65</td>
<td>0.65</td>
</tr>
<tr>
<td>1:A:287:GLU:HG3</td>
<td>1:B:379:ARG:NE</td>
<td>2.11</td>
<td>0.65</td>
</tr>
<tr>
<td>1:C:101:GLU:HB3</td>
<td>1:C:301:GLU:OE2</td>
<td>1.95</td>
<td>0.65</td>
</tr>
<tr>
<td>1:D:42:ARG:HE</td>
<td>1:D:100:GLN:HE21</td>
<td>1.44</td>
<td>0.64</td>
</tr>
<tr>
<td>1:D:448:GLN:O</td>
<td>1:D:450:ILE:HD13</td>
<td>1.97</td>
<td>0.64</td>
</tr>
<tr>
<td>1:D:296:GLN:H</td>
<td>1:D:296:GLN:HE21</td>
<td>1.44</td>
<td>0.64</td>
</tr>
<tr>
<td>1:D:122:MSE:HE2</td>
<td>1:D:146:LEU:HD22</td>
<td>1.79</td>
<td>0.64</td>
</tr>
<tr>
<td>1:D:150:PHE:HD2</td>
<td>1:D:176:ASP:HA</td>
<td>1.62</td>
<td>0.64</td>
</tr>
<tr>
<td>1:A:369:VAL:HA</td>
<td>1:A:372:GLU:OE1</td>
<td>1.97</td>
<td>0.64</td>
</tr>
<tr>
<td>1:D:341:ARG:CG</td>
<td>1:D:351:TRP:CZ2</td>
<td>2.79</td>
<td>0.64</td>
</tr>
<tr>
<td>1:D:357:LEU:HG</td>
<td>1:D:366:LEU:CD2</td>
<td>2.28</td>
<td>0.63</td>
</tr>
<tr>
<td>1:D:37:LEU:HD12</td>
<td>1:D:38:ARG:H</td>
<td>1.63</td>
<td>0.63</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:B:20:MSE:HE1</td>
<td>1:B:296:GLN:OE1</td>
<td>1.99</td>
<td>0.63</td>
</tr>
<tr>
<td>1:C:191:ILE:HD12</td>
<td>1:C:236:LEU:HB2</td>
<td>1.80</td>
<td>0.63</td>
</tr>
<tr>
<td>1:D:219:GLN:HA</td>
<td>1:D:219:GLN:OE1</td>
<td>1.98</td>
<td>0.63</td>
</tr>
<tr>
<td>1:D:150:PHE:CD2</td>
<td>1:D:176:ASP:HA</td>
<td>2.32</td>
<td>0.63</td>
</tr>
<tr>
<td>1:B:189:ASP:HB2</td>
<td>1:B:237:ARG:NH1</td>
<td>2.14</td>
<td>0.62</td>
</tr>
<tr>
<td>1:D:7:TYR:HE2</td>
<td>1:D:211:LYS:HA</td>
<td>1.63</td>
<td>0.62</td>
</tr>
<tr>
<td>1:D:351:TRP:CE3</td>
<td>1:D:352:ASP:O</td>
<td>2.51</td>
<td>0.62</td>
</tr>
<tr>
<td>1:A:153:SER:O</td>
<td>1:A:156:LYS:HD3</td>
<td>2.00</td>
<td>0.62</td>
</tr>
<tr>
<td>1:C:176:ASP:CG</td>
<td>1:C:176:ASP:O</td>
<td>2.36</td>
<td>0.62</td>
</tr>
<tr>
<td>1:D:58:ALA:N</td>
<td>1:D:59:PRO:HD2</td>
<td>2.14</td>
<td>0.62</td>
</tr>
<tr>
<td>1:A:106:LEU:HB3</td>
<td>1:A:107:PRO:HD3</td>
<td>1.82</td>
<td>0.62</td>
</tr>
<tr>
<td>1:B:122:MSE:HE3</td>
<td>1:B:146:LEU:HD22</td>
<td>1.82</td>
<td>0.62</td>
</tr>
<tr>
<td>1:D:7:TYR:CE2</td>
<td>1:D:211:LYS:HA</td>
<td>2.35</td>
<td>0.62</td>
</tr>
<tr>
<td>1:C:221:ILE:O</td>
<td>1:C:225:GLN:HG3</td>
<td>2.00</td>
<td>0.61</td>
</tr>
<tr>
<td>1:C:226:ARG:O</td>
<td>1:C:229:ILE:HG22</td>
<td>2.00</td>
<td>0.61</td>
</tr>
<tr>
<td>1:B:351:TRP:CE3</td>
<td>1:B:351:TRP:O</td>
<td>2.52</td>
<td>0.61</td>
</tr>
<tr>
<td>1:A:430:VAL:O</td>
<td>1:A:459:ARG:O</td>
<td>2.18</td>
<td>0.61</td>
</tr>
<tr>
<td>1:D:274:LEU:HD22</td>
<td>1:D:277:LEU:HD22</td>
<td>1.81</td>
<td>0.61</td>
</tr>
<tr>
<td>1:B:338:GLY:HA2</td>
<td>1:B:341:ARG:HD2</td>
<td>1.83</td>
<td>0.61</td>
</tr>
<tr>
<td>1:C:142:GLU:HA</td>
<td>1:C:142:GLU:OE2</td>
<td>2.01</td>
<td>0.61</td>
</tr>
<tr>
<td>1:A:396:ARG:O</td>
<td>1:A:398:GLN:NE2</td>
<td>2.33</td>
<td>0.60</td>
</tr>
<tr>
<td>1:B:324:VAL:CG1</td>
<td>1:B:324:VAL:O</td>
<td>2.49</td>
<td>0.60</td>
</tr>
<tr>
<td>1:B:108:VAL:HG13</td>
<td>1:B:135:ILE:HD13</td>
<td>1.84</td>
<td>0.60</td>
</tr>
<tr>
<td>1:B:341:ARG:HB3</td>
<td>1:B:351:TRP:CZ2</td>
<td>2.37</td>
<td>0.60</td>
</tr>
<tr>
<td>1:B:225:GLN:NE2</td>
<td>1:B:253:GLU:HB3</td>
<td>2.10</td>
<td>0.60</td>
</tr>
<tr>
<td>1:A:445:PHE:HB3</td>
<td>1:A:450:ILE:HD11</td>
<td>1.83</td>
<td>0.60</td>
</tr>
<tr>
<td>1:C:108:VAL:CG1</td>
<td>1:C:134:GLN:HG2</td>
<td>2.29</td>
<td>0.60</td>
</tr>
<tr>
<td>1:C:236:LEU:HD11</td>
<td>1:C:240:GLY:CA</td>
<td>2.30</td>
<td>0.60</td>
</tr>
<tr>
<td>1:A:223:ALA:CA</td>
<td>1:A:226:ARG:NH1</td>
<td>2.61</td>
<td>0.59</td>
</tr>
<tr>
<td>1:A:29:PHE:CA</td>
<td>1:A:296:GLN:HG2</td>
<td>2.33</td>
<td>0.59</td>
</tr>
<tr>
<td>1:A:58:ALA:N</td>
<td>1:A:59:PRO:HD2</td>
<td>2.16</td>
<td>0.59</td>
</tr>
<tr>
<td>1:B:162:ILE:CD1</td>
<td>1:B:170:VAL:HG11</td>
<td>2.33</td>
<td>0.59</td>
</tr>
<tr>
<td>1:D:127:ALA:H</td>
<td>1:D:149:GLU:HG2</td>
<td>1.66</td>
<td>0.59</td>
</tr>
<tr>
<td>1:C:94:SER:HB3</td>
<td>1:C:450:ILE:HD11</td>
<td>1.85</td>
<td>0.59</td>
</tr>
<tr>
<td>1:A:318:PRO:O</td>
<td>1:A:320:PRO:CD</td>
<td>2.43</td>
<td>0.59</td>
</tr>
<tr>
<td>1:B:42:ARG:HE</td>
<td>1:B:100:GLN:NE2</td>
<td>2.00</td>
<td>0.59</td>
</tr>
<tr>
<td>1:D:26:PHE:O</td>
<td>1:D:29:PHE:HB3</td>
<td>2.01</td>
<td>0.59</td>
</tr>
<tr>
<td>1:C:16:MSE:HE1</td>
<td>1:C:249:LEU:CB</td>
<td>2.33</td>
<td>0.59</td>
</tr>
<tr>
<td>1:C:456:ILE:HG21</td>
<td>1:C:459:ARG:NH2</td>
<td>2.18</td>
<td>0.58</td>
</tr>
<tr>
<td>1:A:202:VAL:O</td>
<td>1:A:202:VAL:HG12</td>
<td>2.03</td>
<td>0.58</td>
</tr>
</tbody>
</table>

Continued on next page...
Interatomic Distances and Clash Overlaps

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic Distance (Å)</th>
<th>Clash Overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:D:410:ASN:HD22</td>
<td>1:D:413:ALA:N</td>
<td>2.01</td>
<td>0.58</td>
</tr>
<tr>
<td>1:B:42:ARG:HE</td>
<td>1:B:100:GLN:HE21</td>
<td>1.51</td>
<td>0.58</td>
</tr>
<tr>
<td>1:B:40:SER:OG</td>
<td>1:B:100:GLN:O</td>
<td>2.20</td>
<td>0.58</td>
</tr>
<tr>
<td>1:C:229:ILE:HG12</td>
<td>1:C:261:LEU:HD22</td>
<td>1.86</td>
<td>0.58</td>
</tr>
<tr>
<td>1:D:178:ARG:NH1</td>
<td>1:D:178:ARG:HG3</td>
<td>2.17</td>
<td>0.58</td>
</tr>
<tr>
<td>1:C:456:ILE:HG21</td>
<td>1:C:459:ARG:HH22</td>
<td>1.69</td>
<td>0.58</td>
</tr>
<tr>
<td>1:B:162:ILE:HG23</td>
<td>1:B:167:ILE:HB</td>
<td>1.86</td>
<td>0.58</td>
</tr>
<tr>
<td>1:C:338:GLY:HA2</td>
<td>1:C:341:ARG:HH21</td>
<td>1.68</td>
<td>0.58</td>
</tr>
<tr>
<td>1:D:430:VAL:O</td>
<td>1:D:459:ARG:O</td>
<td>2.22</td>
<td>0.57</td>
</tr>
<tr>
<td>1:C:278:PHE:CB</td>
<td>1:C:279:PRO:HD2</td>
<td>1.86</td>
<td>0.57</td>
</tr>
<tr>
<td>1:C:16:ME:HE3</td>
<td>1:C:29:PHE:CZ</td>
<td>2.39</td>
<td>0.57</td>
</tr>
<tr>
<td>1:A:104:SER:OG</td>
<td>1:A:131:LYS:HE3</td>
<td>2.05</td>
<td>0.57</td>
</tr>
<tr>
<td>1:A:7:TYR:O</td>
<td>1:A:210:LEU:HD11</td>
<td>2.04</td>
<td>0.57</td>
</tr>
<tr>
<td>1:B:337:ALA:O</td>
<td>1:B:341:ARG:HG3</td>
<td>2.05</td>
<td>0.57</td>
</tr>
<tr>
<td>1:A:473:LYS:H</td>
<td>1:A:473:LYS:HZ3</td>
<td>1.52</td>
<td>0.57</td>
</tr>
<tr>
<td>1:B:27:ASP:N</td>
<td>1:B:27:ASP:OD2</td>
<td>2.29</td>
<td>0.57</td>
</tr>
<tr>
<td>1:D:221:ILE:O</td>
<td>1:D:224:THR:HB</td>
<td>2.05</td>
<td>0.57</td>
</tr>
<tr>
<td>1:B:29:PHE:CA</td>
<td>1:B:296:GLN:HG2</td>
<td>2.29</td>
<td>0.57</td>
</tr>
<tr>
<td>1:C:398:GLN:O</td>
<td>1:C:402:VAL:HG23</td>
<td>2.05</td>
<td>0.57</td>
</tr>
<tr>
<td>1:B:201:GLY:O</td>
<td>1:B:301:GLU:HG2</td>
<td>2.05</td>
<td>0.56</td>
</tr>
<tr>
<td>1:D:286:THR:OG1</td>
<td>1:D:290:PHE:HB2</td>
<td>2.04</td>
<td>0.56</td>
</tr>
<tr>
<td>1:B:136:SER:HB3</td>
<td>1:B:167:ILE:HD12</td>
<td>1.87</td>
<td>0.56</td>
</tr>
<tr>
<td>1:C:129:GLY:O</td>
<td>1:C:133:THR:HG23</td>
<td>2.05</td>
<td>0.56</td>
</tr>
<tr>
<td>1:B:352:ASP:CB</td>
<td>1:B:354:ASN:H</td>
<td>2.18</td>
<td>0.56</td>
</tr>
<tr>
<td>1:C:29:PHE:HB2</td>
<td>1:C:296:GLN:HE21</td>
<td>1.70</td>
<td>0.56</td>
</tr>
<tr>
<td>1:A:197:CYS:HB2</td>
<td>1:A:248:THR:HG22</td>
<td>1.88</td>
<td>0.56</td>
</tr>
<tr>
<td>1:B:350:ASN:O</td>
<td>1:B:405:LEU:HB3</td>
<td>2.05</td>
<td>0.56</td>
</tr>
<tr>
<td>1:C:47:LYS:NZ</td>
<td>1:C:403:ILE:HG23</td>
<td>2.20</td>
<td>0.56</td>
</tr>
<tr>
<td>1:B:46:LEU:CD1</td>
<td>1:B:167:ILE:HD13</td>
<td>2.35</td>
<td>0.55</td>
</tr>
<tr>
<td>1:D:250:ASN:ND2</td>
<td>1:D:253:GLU:H</td>
<td>2.04</td>
<td>0.55</td>
</tr>
<tr>
<td>1:B:216:GLU:N</td>
<td>1:B:216:GLU:OE2</td>
<td>2.38</td>
<td>0.55</td>
</tr>
<tr>
<td>1:B:185:PRO:O</td>
<td>1:B:235:ALA:HA</td>
<td>2.06</td>
<td>0.55</td>
</tr>
<tr>
<td>1:B:349:LEU:HD21</td>
<td>1:B:402:VAL:HA</td>
<td>1.86</td>
<td>0.55</td>
</tr>
<tr>
<td>1:D:250:ASN:HD21</td>
<td>1:D:253:GLU:H</td>
<td>1.53</td>
<td>0.55</td>
</tr>
<tr>
<td>1:C:470:ARG:HG2</td>
<td>1:C:474:LEU:HD21</td>
<td>1.88</td>
<td>0.55</td>
</tr>
<tr>
<td>1:B:272:LEU:HB3</td>
<td>1:B:307:ARG:HE</td>
<td>1.71</td>
<td>0.55</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:C:105:MSE:HA</td>
<td>1:C:134:GLN:HE22</td>
<td>1.72</td>
<td>0.55</td>
</tr>
<tr>
<td>1:B:430:VAL:O</td>
<td>1:B:459:ARG:O</td>
<td>2.24</td>
<td>0.55</td>
</tr>
<tr>
<td>1:D:37:LEU:HD21</td>
<td>1:D:301:GLU:OE1</td>
<td>2.07</td>
<td>0.55</td>
</tr>
<tr>
<td>1:C:242:LEU:HD12</td>
<td>1:C:243:VAL:N</td>
<td>2.22</td>
<td>0.55</td>
</tr>
<tr>
<td>1:D:132:THR:HG21</td>
<td>1:D:147:ALA:HB2</td>
<td>1.87</td>
<td>0.55</td>
</tr>
<tr>
<td>1:B:106:LEU:HB3</td>
<td>1:B:107:PRO:HD3</td>
<td>1.87</td>
<td>0.55</td>
</tr>
<tr>
<td>1:C:47:LYS:HZ1</td>
<td>1:C:403:ILE:HG23</td>
<td>1.70</td>
<td>0.55</td>
</tr>
<tr>
<td>1:A:261:LEU:HD23</td>
<td>1:A:308:LEU:CD2</td>
<td>2.37</td>
<td>0.54</td>
</tr>
<tr>
<td>1:D:222:ALA:O</td>
<td>1:D:226:ARG:HG2</td>
<td>2.07</td>
<td>0.54</td>
</tr>
<tr>
<td>1:D:37:LEU:HD21</td>
<td>1:D:301:GLU:HG3</td>
<td>1.87</td>
<td>0.54</td>
</tr>
<tr>
<td>1:D:352:ASP:HB3</td>
<td>1:D:354:ASN:H</td>
<td>1.72</td>
<td>0.54</td>
</tr>
<tr>
<td>1:B:415:GLU:OE1</td>
<td>1:B:446:GLN:N</td>
<td>2.41</td>
<td>0.54</td>
</tr>
<tr>
<td>1:A:415:GLU:OE2</td>
<td>1:A:446:GLN:N</td>
<td>2.39</td>
<td>0.54</td>
</tr>
<tr>
<td>1:D:186:GLU:HB3</td>
<td>1:D:237:ARG:HA</td>
<td>1.89</td>
<td>0.54</td>
</tr>
<tr>
<td>1:D:272:LEU:HD11</td>
<td>1:D:309:ARG:HB2</td>
<td>1.88</td>
<td>0.54</td>
</tr>
<tr>
<td>1:A:270:GLU:OE2</td>
<td>1:A:309:ARG:NH2</td>
<td>2.41</td>
<td>0.54</td>
</tr>
<tr>
<td>1:D:127:ALA:HB2</td>
<td>1:D:149:GLU:CG</td>
<td>2.36</td>
<td>0.54</td>
</tr>
<tr>
<td>1:B:237:ARG:HH21</td>
<td>1:B:239:GLY:HA3</td>
<td>1.73</td>
<td>0.54</td>
</tr>
<tr>
<td>1:D:347:VAL:HG12</td>
<td>1:D:347:VAL:O</td>
<td>2.07</td>
<td>0.54</td>
</tr>
<tr>
<td>1:D:103:SER:HB2</td>
<td>1:D:301:GLU:CD</td>
<td>2.27</td>
<td>0.54</td>
</tr>
<tr>
<td>1:D:332:VAL:HG13</td>
<td>1:D:336:GLU:OE2</td>
<td>2.07</td>
<td>0.54</td>
</tr>
<tr>
<td>1:D:206:ASP:HB3</td>
<td>1:D:209:ALA:HB2</td>
<td>1.89</td>
<td>0.54</td>
</tr>
<tr>
<td>1:B:162:ILE:HD13</td>
<td>1:B:170:VAL:HG11</td>
<td>1.89</td>
<td>0.53</td>
</tr>
<tr>
<td>1:B:186:GLU:HB3</td>
<td>1:B:237:ARG:HA</td>
<td>1.89</td>
<td>0.53</td>
</tr>
<tr>
<td>1:B:215:PRO:O</td>
<td>1:B:218:ASN:HB2</td>
<td>2.09</td>
<td>0.53</td>
</tr>
<tr>
<td>1:D:192:LEU:HD23</td>
<td>1:D:192:LEU:C</td>
<td>2.28</td>
<td>0.53</td>
</tr>
<tr>
<td>1:D:202:VAL:O</td>
<td>1:D:202:VAL:HG12</td>
<td>2.08</td>
<td>0.53</td>
</tr>
<tr>
<td>1:A:406:ALA:HB3</td>
<td>1:A:449:PRO:HB3</td>
<td>1.91</td>
<td>0.53</td>
</tr>
<tr>
<td>1:B:113:ALA:HB3</td>
<td>1:B:307:ARG:NH1</td>
<td>2.22</td>
<td>0.53</td>
</tr>
<tr>
<td>1:D:410:ASN:ND2</td>
<td>1:D:412:ASN:OD1</td>
<td>2.41</td>
<td>0.53</td>
</tr>
<tr>
<td>1:A:129:GLY:O</td>
<td>1:A:133:THR:HG23</td>
<td>2.08</td>
<td>0.53</td>
</tr>
<tr>
<td>1:D:233:PHE:CZ</td>
<td>1:D:310:LYS:HG3</td>
<td>2.43</td>
<td>0.53</td>
</tr>
<tr>
<td>1:A:330:SER:OG</td>
<td>1:A:331:PRO:HD2</td>
<td>2.08</td>
<td>0.53</td>
</tr>
<tr>
<td>1:C:8:PHE:CD1</td>
<td>1:C:8:PHE:N</td>
<td>2.74</td>
<td>0.53</td>
</tr>
<tr>
<td>1:C:218:ASN:ND2</td>
<td>1:C:253:GLU:OE2</td>
<td>2.41</td>
<td>0.53</td>
</tr>
<tr>
<td>1:D:200:GLU:CD</td>
<td>1:D:249:LEU:H</td>
<td>2.11</td>
<td>0.53</td>
</tr>
<tr>
<td>1:D:416:LEU:HD13</td>
<td>1:D:421:ALA:HA</td>
<td>1.90</td>
<td>0.53</td>
</tr>
<tr>
<td>1:D:415:GLU:HG2</td>
<td>1:D:444:THR:OG1</td>
<td>2.08</td>
<td>0.53</td>
</tr>
<tr>
<td>1:B:347:VAL:O</td>
<td>1:B:347:VAL:CG1</td>
<td>2.57</td>
<td>0.53</td>
</tr>
<tr>
<td>1:C:335:ARG:NH1</td>
<td>1:C:336:GLU:H</td>
<td>2.07</td>
<td>0.53</td>
</tr>
</tbody>
</table>

Continued on next page...
<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:C:430:VAL:O</td>
<td>1:C:459:ARG:O</td>
<td>2.27</td>
<td>0.53</td>
</tr>
<tr>
<td>1:B:146:LEU:HD23</td>
<td>1:B:146:LEU:C</td>
<td>2.30</td>
<td>0.52</td>
</tr>
<tr>
<td>1:B:341:ARG:CB</td>
<td>1:B:351:TRP:CD2</td>
<td>2.92</td>
<td>0.52</td>
</tr>
<tr>
<td>1:A:424:TRP:HH2</td>
<td>1:A:453:ALA:HB2</td>
<td>1.74</td>
<td>0.52</td>
</tr>
<tr>
<td>1:C:29:PHE:HA</td>
<td>1:C:296:GLN:CG</td>
<td>2.20</td>
<td>0.52</td>
</tr>
<tr>
<td>1:D:158:LEU:O</td>
<td>1:D:162:ILE:HG13</td>
<td>2.10</td>
<td>0.52</td>
</tr>
<tr>
<td>1:D:162:ILE:HG23</td>
<td>1:D:167:ILE:HB</td>
<td>1.90</td>
<td>0.52</td>
</tr>
<tr>
<td>1:D:229:ILE:HD13</td>
<td>1:D:244:TYR:CD2</td>
<td>2.44</td>
<td>0.52</td>
</tr>
<tr>
<td>1:B:226:ARG:HD2</td>
<td>1:B:260:TRP:CD2</td>
<td>2.45</td>
<td>0.52</td>
</tr>
<tr>
<td>1:D:197:CYS:HB2</td>
<td>1:D:253:GLU:OE2</td>
<td>2.09</td>
<td>0.52</td>
</tr>
<tr>
<td>1:D:29:PHE:CA</td>
<td>1:D:296:GLN:HG2</td>
<td>2.40</td>
<td>0.52</td>
</tr>
<tr>
<td>1:D:466:ARG:HA</td>
<td>1:D:469:VAL:HG13</td>
<td>1.91</td>
<td>0.52</td>
</tr>
<tr>
<td>1:B:356:ARG:HH11</td>
<td>1:B:356:ARG:HG2</td>
<td>1.75</td>
<td>0.52</td>
</tr>
<tr>
<td>1:D:200:GLU:HG3</td>
<td>1:D:248:THR:HA</td>
<td>1.91</td>
<td>0.52</td>
</tr>
<tr>
<td>1:A:417:THR:HB</td>
<td>1:A:418:PRO:HD2</td>
<td>1.92</td>
<td>0.52</td>
</tr>
<tr>
<td>1:D:208:ASP:O</td>
<td>1:D:211:LYS:HG3</td>
<td>2.09</td>
<td>0.52</td>
</tr>
<tr>
<td>1:B:17:ARG:NH2</td>
<td>1:B:26:PHE:CE2</td>
<td>2.76</td>
<td>0.52</td>
</tr>
<tr>
<td>1:C:165:CYS:HB2</td>
<td>1:C:167:ILE:HD12</td>
<td>1.92</td>
<td>0.52</td>
</tr>
<tr>
<td>1:D:180:PHE:O</td>
<td>1:D:184:VAL:HG12</td>
<td>2.10</td>
<td>0.52</td>
</tr>
<tr>
<td>1:A:127:ALA:HB3</td>
<td>1:A:149:GLU:OE2</td>
<td>2.10</td>
<td>0.51</td>
</tr>
<tr>
<td>1:D:29:PHE:HA</td>
<td>1:D:296:GLN:HG3</td>
<td>1.90</td>
<td>0.51</td>
</tr>
<tr>
<td>1:C:322:TYR:O</td>
<td>1:C:323:LYS:C</td>
<td>2.49</td>
<td>0.51</td>
</tr>
<tr>
<td>1:A:210:LEU:HD12</td>
<td>1:A:211:LYS:H</td>
<td>1.76</td>
<td>0.51</td>
</tr>
<tr>
<td>1:A:261:LEU:HD23</td>
<td>1:A:308:LEU:HD22</td>
<td>1.91</td>
<td>0.51</td>
</tr>
<tr>
<td>1:B:202:VAL:HG12</td>
<td>1:B:202:VAL:O</td>
<td>2.10</td>
<td>0.51</td>
</tr>
<tr>
<td>1:D:368:PRO:O</td>
<td>1:D:371:ILE:HG22</td>
<td>2.11</td>
<td>0.51</td>
</tr>
<tr>
<td>1:D:341:ARG:HG3</td>
<td>1:D:351:TRP:HZ2</td>
<td>1.75</td>
<td>0.51</td>
</tr>
<tr>
<td>1:A:439:ASP:HA</td>
<td>1:A:455:ARG:HB2</td>
<td>1.92</td>
<td>0.51</td>
</tr>
<tr>
<td>1:C:193:LEU:HD23</td>
<td>1:C:244:TYR:CD2</td>
<td>2.46</td>
<td>0.51</td>
</tr>
<tr>
<td>1:C:245:SER:HA</td>
<td>1:C:304:PHE:O</td>
<td>2.11</td>
<td>0.51</td>
</tr>
<tr>
<td>1:B:425:TYR:OH</td>
<td>1:B:450:ILE:HD11</td>
<td>2.07</td>
<td>0.50</td>
</tr>
<tr>
<td>1:D:420:GLU:OE1</td>
<td>1:D:420:GLU:CG</td>
<td>2.55</td>
<td>0.50</td>
</tr>
<tr>
<td>1:C:102:ALA:HA</td>
<td>1:C:105:MSE:HE3</td>
<td>1.92</td>
<td>0.50</td>
</tr>
<tr>
<td>1:D:184:VAL:HG22</td>
<td>1:D:187:MSE:HB2</td>
<td>1.92</td>
<td>0.50</td>
</tr>
<tr>
<td>1:D:324:VAL:HG12</td>
<td>1:D:379:ARG:NE</td>
<td>2.21</td>
<td>0.50</td>
</tr>
<tr>
<td>1:B:122:MSE:HE1</td>
<td>1:B:180:PHE:CD2</td>
<td>2.42</td>
<td>0.50</td>
</tr>
<tr>
<td>1:C:127:ALA:H</td>
<td>1:C:149:GLU:HG2</td>
<td>1.77</td>
<td>0.50</td>
</tr>
</tbody>
</table>
| 1:D:265:TYR:HB3 | 1:D:268:ALA:HB3 | 1.93 | 0.50
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:D:338:GLY:O</td>
<td>1:D:341:ARG:HB2</td>
<td>2.11</td>
<td>0.50</td>
</tr>
<tr>
<td>1:C:341:ARG:CB</td>
<td>1:C:351:TRP:CG2</td>
<td>2.92</td>
<td>0.50</td>
</tr>
<tr>
<td>1:D:26:PHE:CD2</td>
<td>1:D:26:PHE:C</td>
<td>2.84</td>
<td>0.50</td>
</tr>
<tr>
<td>1:A:273:PRO:HA</td>
<td>1:A:289:GLY:HA3</td>
<td>1.94</td>
<td>0.50</td>
</tr>
<tr>
<td>1:D:37:LEU:HD12</td>
<td>1:D:38:ARG:N</td>
<td>2.27</td>
<td>0.50</td>
</tr>
<tr>
<td>1:A:426:ARG:NH2</td>
<td>1:A:472:GLY:O</td>
<td>2.44</td>
<td>0.49</td>
</tr>
<tr>
<td>1:C:111:LEU:HD12</td>
<td>1:C:243:VAL:HG23</td>
<td>1.93</td>
<td>0.49</td>
</tr>
<tr>
<td>1:D:406:ALA:HB3</td>
<td>1:D:449:PRO:HB3</td>
<td>1.94</td>
<td>0.49</td>
</tr>
<tr>
<td>1:B:224:THR:HG22</td>
<td>1:B:228:LEU:CD1</td>
<td>2.40</td>
<td>0.49</td>
</tr>
<tr>
<td>1:D:250:ASN:HD22</td>
<td>1:D:252:GLU:N</td>
<td>2.10</td>
<td>0.49</td>
</tr>
<tr>
<td>1:C:445:PHE:C</td>
<td>1:C:446:GLN:HG2</td>
<td>2.33</td>
<td>0.49</td>
</tr>
<tr>
<td>1:D:324:VAL:HA</td>
<td>1:D:379:ARG:HH21</td>
<td>1.76</td>
<td>0.49</td>
</tr>
<tr>
<td>1:A:29:PHE:O</td>
<td>1:A:33:CYS:HB2</td>
<td>2.13</td>
<td>0.49</td>
</tr>
<tr>
<td>1:C:101:GLU:CB</td>
<td>1:C:301:GLU:OE2</td>
<td>2.59</td>
<td>0.49</td>
</tr>
<tr>
<td>1:C:20:MSE:HE1</td>
<td>1:C:294:PHE:CD1</td>
<td>2.48</td>
<td>0.49</td>
</tr>
<tr>
<td>1:A:470:ARG:HG2</td>
<td>1:A:474:LEU:HD21</td>
<td>1.94</td>
<td>0.49</td>
</tr>
<tr>
<td>1:B:294:PHE:HB3</td>
<td>1:B:295:PRO:HD2</td>
<td>1.95</td>
<td>0.49</td>
</tr>
<tr>
<td>1:C:193:LEU:HD23</td>
<td>1:C:244:TYR:HD2</td>
<td>1.77</td>
<td>0.49</td>
</tr>
<tr>
<td>1:C:288:GLU:OE1</td>
<td>1:C:288:GLU:N</td>
<td>2.45</td>
<td>0.49</td>
</tr>
<tr>
<td>1:C:446:GLN:O</td>
<td>1:C:447:HIS:HB2</td>
<td>2.12</td>
<td>0.49</td>
</tr>
<tr>
<td>1:D:234:HIS:CE1</td>
<td>1:D:314:ILE:CD1</td>
<td>2.95</td>
<td>0.49</td>
</tr>
<tr>
<td>1:D:420:GLU:CB</td>
<td>1:D:420:GLU:OE1</td>
<td>2.61</td>
<td>0.49</td>
</tr>
<tr>
<td>1:A:286:THR:HB</td>
<td>1:A:288:GLU:OE2</td>
<td>2.13</td>
<td>0.49</td>
</tr>
<tr>
<td>1:B:186:GLU:O</td>
<td>1:B:237:ARG:HB3</td>
<td>2.11</td>
<td>0.49</td>
</tr>
<tr>
<td>1:D:456:ILE:HG21</td>
<td>1:D:459:ARG:HE</td>
<td>1.77</td>
<td>0.49</td>
</tr>
<tr>
<td>1:A:252:GLU:H</td>
<td>1:A:252:GLU:CD</td>
<td>2.15</td>
<td>0.49</td>
</tr>
<tr>
<td>1:A:414:PHE:CE2</td>
<td>1:A:436:PRO:HD3</td>
<td>2.48</td>
<td>0.49</td>
</tr>
<tr>
<td>1:C:184:VAL:O</td>
<td>1:C:184:VAL:HG13</td>
<td>2.13</td>
<td>0.49</td>
</tr>
<tr>
<td>1:A:424:TRP:CH2</td>
<td>1:A:453:ALA:HB2</td>
<td>2.47</td>
<td>0.49</td>
</tr>
<tr>
<td>1:C:309:ARG:HG3</td>
<td>1:C:309:ARG:HH11</td>
<td>1.78</td>
<td>0.49</td>
</tr>
<tr>
<td>1:A:347:VAL:CG1</td>
<td>1:A:347:VAL:O</td>
<td>2.61</td>
<td>0.48</td>
</tr>
<tr>
<td>1:B:335:ARG:NH1</td>
<td>1:B:335:ARG:CG</td>
<td>2.42</td>
<td>0.48</td>
</tr>
<tr>
<td>1:B:40:SER:OG</td>
<td>1:B:101:GLU:HA</td>
<td>2.11</td>
<td>0.48</td>
</tr>
<tr>
<td>1:C:226:ARG:HD3</td>
<td>1:C:260:TRP:CG</td>
<td>2.48</td>
<td>0.48</td>
</tr>
<tr>
<td>1:D:45:THR:O</td>
<td>1:D:45:THR:HG22</td>
<td>2.13</td>
<td>0.48</td>
</tr>
<tr>
<td>1:A:120:ARG:HG2</td>
<td>1:A:120:ARG:HH11</td>
<td>1.77</td>
<td>0.48</td>
</tr>
<tr>
<td>1:B:146:LEU:HD21</td>
<td>1:B:173:THR:OG1</td>
<td>2.13</td>
<td>0.48</td>
</tr>
<tr>
<td>1:C:419:GLN:HA</td>
<td>1:C:419:GLN:OE1</td>
<td>2.13</td>
<td>0.48</td>
</tr>
<tr>
<td>1:D:103:SER:OG</td>
<td>1:D:303:PHE:CE1</td>
<td>2.61</td>
<td>0.48</td>
</tr>
</tbody>
</table>

Continued on next page...
<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:A:182:ALA:HB1</td>
<td>1:A:319:ALA:HB3</td>
<td>1.95</td>
<td>0.48</td>
</tr>
<tr>
<td>1:C:431:TYR:CD1</td>
<td>1:C:431:TYR:N</td>
<td>2.81</td>
<td>0.48</td>
</tr>
<tr>
<td>1:C:445:PHE:O</td>
<td>1:C:446:GLN:HG2</td>
<td>2.13</td>
<td>0.48</td>
</tr>
<tr>
<td>1:A:221:ILE:O</td>
<td>1:A:225:GLN:CG</td>
<td>2.60</td>
<td>0.48</td>
</tr>
<tr>
<td>1:A:424:TRP:NE1</td>
<td>1:A:464:TYR:HB2</td>
<td>2.29</td>
<td>0.48</td>
</tr>
<tr>
<td>1:B:399:HIS:NE2</td>
<td>1:B:403:ILE:HD11</td>
<td>2.26</td>
<td>0.48</td>
</tr>
<tr>
<td>1:D:406:ALA:HB1</td>
<td>1:D:442:LEU:HD21</td>
<td>1.95</td>
<td>0.48</td>
</tr>
<tr>
<td>1:D:471:ASP:OD2</td>
<td>1:D:471:ASP:N</td>
<td>2.43</td>
<td>0.48</td>
</tr>
<tr>
<td>1:B:286:THR:HG23</td>
<td>1:B:290:PHE:O</td>
<td>2.13</td>
<td>0.48</td>
</tr>
<tr>
<td>1:D:290:PHE:CD2</td>
<td>1:D:304:PHE:HZ</td>
<td>2.32</td>
<td>0.48</td>
</tr>
<tr>
<td>1:D:37:LEU:HD21</td>
<td>1:D:301:GLU:CG</td>
<td>2.44</td>
<td>0.48</td>
</tr>
<tr>
<td>1:C:90:ALA:HA</td>
<td>1:C:93:LEU:HD12</td>
<td>1.95</td>
<td>0.48</td>
</tr>
<tr>
<td>1:B:122:MSE:CE</td>
<td>1:B:180:PHE:CZ</td>
<td>2.97</td>
<td>0.48</td>
</tr>
<tr>
<td>1:C:108:VAL:CG2</td>
<td>1:C:134:GLN:HE21</td>
<td>2.27</td>
<td>0.48</td>
</tr>
<tr>
<td>1:C:127:ALA:HB2</td>
<td>1:C:149:GLU:CG</td>
<td>2.40</td>
<td>0.48</td>
</tr>
<tr>
<td>1:C:108:VAL:HG21</td>
<td>1:C:134:GLN:HE21</td>
<td>1.79</td>
<td>0.47</td>
</tr>
<tr>
<td>1:C:466:ARG:C</td>
<td>1:C:468:LEU:H</td>
<td>2.18</td>
<td>0.47</td>
</tr>
<tr>
<td>1:D:317:LEU:HB3</td>
<td>1:D:318:PRO:HD2</td>
<td>1.96</td>
<td>0.47</td>
</tr>
<tr>
<td>1:A:26:PHE:C</td>
<td>1:A:26:PHE:CD2</td>
<td>2.87</td>
<td>0.47</td>
</tr>
<tr>
<td>1:A:41:ILE:HG13</td>
<td>1:A:97:PHE:CD1</td>
<td>2.49</td>
<td>0.47</td>
</tr>
<tr>
<td>1:B:199:GLY:O</td>
<td>1:B:202:VAL:HB</td>
<td>2.14</td>
<td>0.47</td>
</tr>
<tr>
<td>1:D:37:LEU:CD2</td>
<td>1:D:301:GLU:HG3</td>
<td>2.45</td>
<td>0.47</td>
</tr>
<tr>
<td>1:B:234:HIS:CE1</td>
<td>1:B:314:ILE:HD13</td>
<td>2.50</td>
<td>0.47</td>
</tr>
<tr>
<td>1:B:432:PRO:HG2</td>
<td>1:B:435:ALA:HA</td>
<td>1.97</td>
<td>0.47</td>
</tr>
<tr>
<td>1:D:273:PRO:HA</td>
<td>1:D:289:GLY:HA3</td>
<td>1.97</td>
<td>0.47</td>
</tr>
<tr>
<td>1:B:108:VAL:CG1</td>
<td>1:B:134:GLN:HG2</td>
<td>2.43</td>
<td>0.47</td>
</tr>
<tr>
<td>1:C:341:ARG:HD3</td>
<td>1:C:351:TRP:CZ2</td>
<td>2.47</td>
<td>0.47</td>
</tr>
<tr>
<td>1:D:260:TRP:O</td>
<td>1:D:263:GLU:HB2</td>
<td>2.15</td>
<td>0.47</td>
</tr>
<tr>
<td>1:A:45:THR:O</td>
<td>1:A:45:THR:CG2</td>
<td>2.60</td>
<td>0.47</td>
</tr>
<tr>
<td>1:C:32:ALA:CB</td>
<td>1:C:296:GLN:HB3</td>
<td>2.45</td>
<td>0.47</td>
</tr>
<tr>
<td>1:C:32:ALA:HB2</td>
<td>1:C:296:GLN:HB3</td>
<td>1.97</td>
<td>0.47</td>
</tr>
<tr>
<td>1:B:136:SER:CB</td>
<td>1:B:167:ILE:HD12</td>
<td>2.45</td>
<td>0.47</td>
</tr>
<tr>
<td>1:B:184:VAL:O</td>
<td>1:B:185:PRO:O</td>
<td>2.32</td>
<td>0.47</td>
</tr>
<tr>
<td>1:B:296:GLN:HB2</td>
<td>1:B:296:GLN:HE21</td>
<td>1.53</td>
<td>0.47</td>
</tr>
<tr>
<td>1:C:410:ASN:OD1</td>
<td>1:C:412:ASN:N</td>
<td>2.48</td>
<td>0.47</td>
</tr>
<tr>
<td>1:D:234:HIS:HE1</td>
<td>1:D:265:TYR:OH</td>
<td>1.98</td>
<td>0.47</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:D:445:PHE:C</td>
<td>1:D:446:GLN:HG2</td>
<td>2.35</td>
<td>0.47</td>
</tr>
<tr>
<td>1:C:37:LEU:HG</td>
<td>1:C:204:ARG:HB2</td>
<td>1.98</td>
<td>0.46</td>
</tr>
<tr>
<td>1:D:210:LEU:HB2</td>
<td>1:D:213:TRP:HB2</td>
<td>1.96</td>
<td>0.46</td>
</tr>
<tr>
<td>1:D:347:VAL:HG11</td>
<td>1:D:452:LEU:HD11</td>
<td>1.97</td>
<td>0.46</td>
</tr>
<tr>
<td>1:D:426:ARG:HH11</td>
<td>1:D:474:LEU:HD12</td>
<td>1.79</td>
<td>0.46</td>
</tr>
<tr>
<td>1:C:187:MSE:CE</td>
<td>1:C:187:MSE:HB2</td>
<td>2.45</td>
<td>0.46</td>
</tr>
<tr>
<td>1:C:336:GLU:HA</td>
<td>1:C:339:GLN:HG2</td>
<td>1.96</td>
<td>0.46</td>
</tr>
<tr>
<td>1:D:459:ARG:O</td>
<td>1:D:460:LEU:HB2</td>
<td>2.15</td>
<td>0.46</td>
</tr>
<tr>
<td>1:B:358:TRP:CD1</td>
<td>1:B:367:PHE:CD2</td>
<td>3.03</td>
<td>0.46</td>
</tr>
<tr>
<td>1:C:237:ARG:HG3</td>
<td>1:C:238:PRO:O</td>
<td>2.16</td>
<td>0.46</td>
</tr>
<tr>
<td>1:C:106:LEU:HB3</td>
<td>1:C:107:PRO:CD</td>
<td>2.44</td>
<td>0.46</td>
</tr>
<tr>
<td>1:C:111:LEU:HD23</td>
<td>1:C:112:PHE:CE2</td>
<td>2.51</td>
<td>0.46</td>
</tr>
<tr>
<td>1:C:35:ARG:HH21</td>
<td>1:C:299:ASP:CG</td>
<td>2.19</td>
<td>0.46</td>
</tr>
<tr>
<td>1:C:366:LEU:O</td>
<td>1:C:384:GLY:HA3</td>
<td>2.16</td>
<td>0.46</td>
</tr>
<tr>
<td>1:D:29:PHE:O</td>
<td>1:D:33:CY3:HB2</td>
<td>2.15</td>
<td>0.46</td>
</tr>
<tr>
<td>1:A:184:VAL:HG22</td>
<td>1:A:187:MSE:CB</td>
<td>2.46</td>
<td>0.46</td>
</tr>
<tr>
<td>1:A:246:THR:OG1</td>
<td>1:A:254:ASN:OD1</td>
<td>2.29</td>
<td>0.46</td>
</tr>
<tr>
<td>1:D:424:TRP:NE1</td>
<td>1:D:464:TYR:HB2</td>
<td>2.30</td>
<td>0.46</td>
</tr>
<tr>
<td>1:C:351:TRP:O</td>
<td>1:C:351:TRP:HE3</td>
<td>1.98</td>
<td>0.46</td>
</tr>
<tr>
<td>1:B:473:LYS:C</td>
<td>1:B:474:LEU:HG</td>
<td>2.36</td>
<td>0.46</td>
</tr>
<tr>
<td>1:D:122:MSE:HE3</td>
<td>1:D:146:LEU:HD22</td>
<td>1.95</td>
<td>0.46</td>
</tr>
<tr>
<td>1:D:167:ILE:HG21</td>
<td>1:D:170:VAL:HG23</td>
<td>1.98</td>
<td>0.46</td>
</tr>
<tr>
<td>1:D:338:GLY:HA2</td>
<td>1:D:341:ARG:HD2</td>
<td>1.97</td>
<td>0.46</td>
</tr>
<tr>
<td>1:B:55:GLN:HB3</td>
<td>1:B:55:GLN:HE21</td>
<td>1.57</td>
<td>0.46</td>
</tr>
<tr>
<td>1:C:362:LYS:H</td>
<td>1:C:362:LYS:HG2</td>
<td>1.43</td>
<td>0.46</td>
</tr>
<tr>
<td>1:D:101:GLU:H</td>
<td>1:D:101:GLU:HG2</td>
<td>1.33</td>
<td>0.46</td>
</tr>
<tr>
<td>1:D:357:LEU:HD12</td>
<td>1:D:357:LEU:N</td>
<td>2.31</td>
<td>0.46</td>
</tr>
<tr>
<td>1:D:42:ARG:HE</td>
<td>1:D:100:GLN:NE2</td>
<td>2.12</td>
<td>0.45</td>
</tr>
<tr>
<td>1:B:131:LYS:O</td>
<td>1:B:134:GLN:HB3</td>
<td>2.17</td>
<td>0.45</td>
</tr>
<tr>
<td>1:C:216:GLU:HA</td>
<td>1:C:216:GLU:OE2</td>
<td>2.16</td>
<td>0.45</td>
</tr>
<tr>
<td>1:C:226:ARG:HG2</td>
<td>1:C:260:TRP:CE3</td>
<td>2.51</td>
<td>0.45</td>
</tr>
<tr>
<td>1:D:200:GLU:HG2</td>
<td>1:D:248:THR:OG1</td>
<td>2.16</td>
<td>0.45</td>
</tr>
<tr>
<td>1:D:464:TYR:HE2</td>
<td>1:D:469:VAL:HA</td>
<td>1.81</td>
<td>0.45</td>
</tr>
<tr>
<td>1:A:427:GLY:HA2</td>
<td>1:A:462:ASN:ND2</td>
<td>2.31</td>
<td>0.45</td>
</tr>
<tr>
<td>1:A:197:CYS:CB</td>
<td>1:A:248:THR:HG22</td>
<td>2.46</td>
<td>0.45</td>
</tr>
<tr>
<td>1:A:35:ARG:HG3</td>
<td>1:A:204:ARG:HH21</td>
<td>1.81</td>
<td>0.45</td>
</tr>
<tr>
<td>1:B:321:LYS:HD2</td>
<td>1:B:321:LYS:HA</td>
<td>1.77</td>
<td>0.45</td>
</tr>
<tr>
<td>1:B:341:ARG:CB</td>
<td>1:B:351:TRP:HZ2</td>
<td>2.24</td>
<td>0.45</td>
</tr>
<tr>
<td>1:C:432:PRO:HG2</td>
<td>1:C:435:ALA:HA</td>
<td>1.98</td>
<td>0.45</td>
</tr>
<tr>
<td>1:D:466:ARG:C</td>
<td>1:D:468:LEU:H</td>
<td>2.20</td>
<td>0.45</td>
</tr>
</tbody>
</table>

Continued on next page...
<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:A:362:LYS:O</td>
<td>1:A:390:THR:OG1</td>
<td>2.33</td>
<td>0.45</td>
</tr>
<tr>
<td>1:C:199:GLY:O</td>
<td>1:C:202:VAL:HB</td>
<td>2.16</td>
<td>0.45</td>
</tr>
<tr>
<td>1:C:273:PRO:HA</td>
<td>1:C:289:GLY:HA3</td>
<td>1.99</td>
<td>0.45</td>
</tr>
<tr>
<td>1:B:246:THR:OG1</td>
<td>1:B:254:ASN:ND2</td>
<td>2.37</td>
<td>0.45</td>
</tr>
<tr>
<td>1:D:432:PRO:HG2</td>
<td>1:D:435:ALA:HA</td>
<td>1.98</td>
<td>0.45</td>
</tr>
<tr>
<td>1:D:300:CYT:HG2</td>
<td>1:D:301:GLU:H</td>
<td>1.64</td>
<td>0.45</td>
</tr>
<tr>
<td>1:D:367:PHE:CE1</td>
<td>1:D:383:LEU:HB2</td>
<td>2.51</td>
<td>0.45</td>
</tr>
<tr>
<td>1:D:420:GLU:HG2</td>
<td>1:D:430:VAL:HG13</td>
<td>1.98</td>
<td>0.45</td>
</tr>
<tr>
<td>1:C:142:GLU:CA</td>
<td>1:C:142:GLU:OE2</td>
<td>2.65</td>
<td>0.45</td>
</tr>
<tr>
<td>1:D:8:PHE:HE1</td>
<td>1:D:34:GLU:HE22</td>
<td>1.65</td>
<td>0.45</td>
</tr>
<tr>
<td>1:B:184:VAL:O</td>
<td>1:B:184:VAL:HG12</td>
<td>2.17</td>
<td>0.44</td>
</tr>
<tr>
<td>1:D:347:VAL:CG1</td>
<td>1:D:452:LEU:HD11</td>
<td>2.47</td>
<td>0.44</td>
</tr>
<tr>
<td>1:A:233:PHE:CE1</td>
<td>1:A:269:VAL:HG22</td>
<td>2.52</td>
<td>0.44</td>
</tr>
<tr>
<td>1:A:329:PHE:CE1</td>
<td>1:A:360:ARG:NH1</td>
<td>2.86</td>
<td>0.44</td>
</tr>
<tr>
<td>1:B:226:ARG:HD2</td>
<td>1:B:260:TRP:CE2</td>
<td>2.52</td>
<td>0.44</td>
</tr>
<tr>
<td>1:C:65:THR:HB</td>
<td>1:C:75:TRP:HB2</td>
<td>1.99</td>
<td>0.44</td>
</tr>
<tr>
<td>1:D:146:LEU:HD23</td>
<td>1:D:146:LEU:C</td>
<td>2.37</td>
<td>0.44</td>
</tr>
<tr>
<td>1:C:341:ARG:HH11</td>
<td>1:C:351:TRP:HH2</td>
<td>1.65</td>
<td>0.44</td>
</tr>
<tr>
<td>1:C:367:PHE:CD1</td>
<td>1:C:383:LEU:HB2</td>
<td>2.52</td>
<td>0.44</td>
</tr>
<tr>
<td>1:A:20:MSE:HA</td>
<td>1:A:21:PRO:HD3</td>
<td>1.79</td>
<td>0.44</td>
</tr>
<tr>
<td>1:A:423:GLU:HG3</td>
<td>1:A:428:ARG:HB2</td>
<td>2.00</td>
<td>0.44</td>
</tr>
<tr>
<td>1:B:56:LEU:HD11</td>
<td>1:B:446:GLU:HG2</td>
<td>2.00</td>
<td>0.44</td>
</tr>
<tr>
<td>1:C:259:LEU:HD23</td>
<td>1:C:259:LEU:HA</td>
<td>1.71</td>
<td>0.44</td>
</tr>
<tr>
<td>1:C:296:GLU:HG3</td>
<td>1:C:296:GLU:H</td>
<td>1.39</td>
<td>0.44</td>
</tr>
<tr>
<td>1:C:86:LEU:HD23</td>
<td>1:C:86:LEU:HA</td>
<td>1.65</td>
<td>0.44</td>
</tr>
<tr>
<td>1:D:454:LYS:HB3</td>
<td>1:D:454:LYS:HE2</td>
<td>1.78</td>
<td>0.44</td>
</tr>
<tr>
<td>1:B:386:LYS:HD2</td>
<td>1:B:398:GLU:HG3</td>
<td>2.00</td>
<td>0.44</td>
</tr>
<tr>
<td>1:B:456:ILE:HD12</td>
<td>1:B:459:ARG:HD2</td>
<td>1.99</td>
<td>0.44</td>
</tr>
<tr>
<td>1:C:202:VAL:CG1</td>
<td>1:C:202:VAL:O</td>
<td>2.65</td>
<td>0.44</td>
</tr>
<tr>
<td>1:A:259:LEU:HA</td>
<td>1:A:259:LEU:HD23</td>
<td>1.73</td>
<td>0.44</td>
</tr>
<tr>
<td>1:A:149:GLU:OE1</td>
<td>1:A:149:GLU:HA</td>
<td>2.18</td>
<td>0.44</td>
</tr>
<tr>
<td>1:A:322:TYR:O</td>
<td>1:A:323:LYS:C</td>
<td>2.56</td>
<td>0.44</td>
</tr>
<tr>
<td>1:B:462:ASN:ND2</td>
<td>1:B:464:TYR:H</td>
<td>2.16</td>
<td>0.44</td>
</tr>
<tr>
<td>1:C:415:GLU:OE1</td>
<td>1:C:445:PHE:HA</td>
<td>2.18</td>
<td>0.44</td>
</tr>
<tr>
<td>1:C:456:ILE:CG2</td>
<td>1:C:459:ARG:NH2</td>
<td>2.81</td>
<td>0.43</td>
</tr>
<tr>
<td>1:C:88:SER:HB3</td>
<td>1:C:470:ARG:HE</td>
<td>1.82</td>
<td>0.43</td>
</tr>
<tr>
<td>1:D:40:SER:OG</td>
<td>1:D:101:GLU:HA</td>
<td>2.17</td>
<td>0.43</td>
</tr>
<tr>
<td>1:B:39:ARG:H</td>
<td>1:B:39:ARG:HG3</td>
<td>1.55</td>
<td>0.43</td>
</tr>
<tr>
<td>1:B:86:LEU:CD2</td>
<td>1:B:97:PHE:CE1</td>
<td>3.01</td>
<td>0.43</td>
</tr>
<tr>
<td>1:C:446:GLU:HB3</td>
<td>1:C:446:GLU:HE21</td>
<td>1.64</td>
<td>0.43</td>
</tr>
<tr>
<td>1:C:186:GLU:HB2</td>
<td>1:C:237:ARG:HA</td>
<td>2.00</td>
<td>0.43</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:C:86:LEU:O</td>
<td>1:C:89:THR:HG22</td>
<td>2.18</td>
<td>0.43</td>
</tr>
<tr>
<td>1:B:386:LYS:HB3</td>
<td>1:B:398:GLN:HG3</td>
<td>1.99</td>
<td>0.43</td>
</tr>
<tr>
<td>1:C:374:LEU:HD12</td>
<td>1:C:374:LEU:N</td>
<td>2.33</td>
<td>0.43</td>
</tr>
<tr>
<td>1:B:112:PHE:CD2</td>
<td>1:B:112:PHE:N</td>
<td>2.86</td>
<td>0.43</td>
</tr>
<tr>
<td>1:B:356:ARG:HG2</td>
<td>1:B:356:ARG:NH1</td>
<td>2.34</td>
<td>0.43</td>
</tr>
<tr>
<td>1:D:135:ILE:O</td>
<td>1:D:139:MSE:HG3</td>
<td>2.19</td>
<td>0.43</td>
</tr>
<tr>
<td>1:A:169:ASN:HD22</td>
<td>1:A:170:VAL:HG23</td>
<td>1.84</td>
<td>0.43</td>
</tr>
<tr>
<td>1:B:357:LEU:H</td>
<td>1:B:357:LEU:HD12</td>
<td>1.84</td>
<td>0.43</td>
</tr>
<tr>
<td>1:B:410:ASN:ND2</td>
<td>1:B:412:ASN:OD1</td>
<td>2.52</td>
<td>0.43</td>
</tr>
<tr>
<td>1:C:120:ARG:NE</td>
<td>1:C:370:GLY:O</td>
<td>2.52</td>
<td>0.43</td>
</tr>
<tr>
<td>1:C:236:LEU:O</td>
<td>1:C:310:LYS:CE</td>
<td>2.65</td>
<td>0.43</td>
</tr>
<tr>
<td>1:D:225:GLN:HE22</td>
<td>1:D:253:GLU:CG</td>
<td>2.27</td>
<td>0.43</td>
</tr>
<tr>
<td>1:A:174:HIS:ND1</td>
<td>1:A:174:HIS:O</td>
<td>2.47</td>
<td>0.43</td>
</tr>
<tr>
<td>1:B:12:PHE:HE1</td>
<td>1:B:200:GLU:OE1</td>
<td>2.01</td>
<td>0.43</td>
</tr>
<tr>
<td>1:B:91:GLU:HG3</td>
<td>1:B:96:LEU:HD12</td>
<td>1.99</td>
<td>0.43</td>
</tr>
<tr>
<td>1:C:351:TRP:O</td>
<td>1:C:351:TRP:CE3</td>
<td>2.72</td>
<td>0.43</td>
</tr>
<tr>
<td>1:A:328:PRO:HG2</td>
<td>1:A:329:PHE:CE1</td>
<td>2.53</td>
<td>0.43</td>
</tr>
<tr>
<td>1:B:13:LEU:C</td>
<td>1:B:15:GLN:H</td>
<td>2.22</td>
<td>0.43</td>
</tr>
<tr>
<td>1:B:294:PHE:H</td>
<td>1:B:297:ILE:CD1</td>
<td>2.31</td>
<td>0.43</td>
</tr>
<tr>
<td>1:D:415:GLU:OE1</td>
<td>1:D:445:PHE:HA</td>
<td>2.19</td>
<td>0.43</td>
</tr>
<tr>
<td>1:C:69:TRP:CG</td>
<td>1:C:106:LEU:HD13</td>
<td>2.53</td>
<td>0.43</td>
</tr>
<tr>
<td>1:D:357:LEU:HD12</td>
<td>1:D:357:LEU:H</td>
<td>1.83</td>
<td>0.43</td>
</tr>
<tr>
<td>1:A:318:PRO:HB2</td>
<td>1:A:319:ALA:HA</td>
<td>2.00</td>
<td>0.43</td>
</tr>
<tr>
<td>1:C:9:PRO:HD3</td>
<td>1:C:210:LEU:HD13</td>
<td>2.01</td>
<td>0.43</td>
</tr>
<tr>
<td>1:C:335:ARG:HB3</td>
<td>1:C:335:ARG:NH1</td>
<td>2.06</td>
<td>0.43</td>
</tr>
<tr>
<td>1:D:120:ARG:HH11</td>
<td>1:D:187:MSE:HG3</td>
<td>1.84</td>
<td>0.43</td>
</tr>
<tr>
<td>1:D:427:GLY:HA2</td>
<td>1:D:462:ASN:OD1</td>
<td>2.19</td>
<td>0.43</td>
</tr>
<tr>
<td>1:B:294:PHE:H</td>
<td>1:B:297:ILE:CD1</td>
<td>1.83</td>
<td>0.42</td>
</tr>
<tr>
<td>1:C:424:TRP:HH2</td>
<td>1:C:453:ALA:HB2</td>
<td>1.84</td>
<td>0.42</td>
</tr>
<tr>
<td>1:D:272:LEU:CB</td>
<td>1:D:307:ARG:HE</td>
<td>2.32</td>
<td>0.42</td>
</tr>
<tr>
<td>1:B:296:GLN:HG3</td>
<td>1:B:296:GLN:H</td>
<td>1.34</td>
<td>0.42</td>
</tr>
<tr>
<td>1:C:366:LEU:HD11</td>
<td>1:C:387:LEU:HD22</td>
<td>2.02</td>
<td>0.42</td>
</tr>
<tr>
<td>1:C:466:ARG:O</td>
<td>1:C:469:VAL:HG22</td>
<td>2.20</td>
<td>0.42</td>
</tr>
<tr>
<td>1:B:112:PHE:H2</td>
<td>1:B:135:ILE:HG23</td>
<td>1.84</td>
<td>0.42</td>
</tr>
<tr>
<td>1:C:158:LEU:HD23</td>
<td>1:C:162:ILE:HD12</td>
<td>2.00</td>
<td>0.42</td>
</tr>
<tr>
<td>1:D:214:SER:HB3</td>
<td>1:D:217:SER:HB3</td>
<td>2.00</td>
<td>0.42</td>
</tr>
<tr>
<td>1:D:371:ILE:HD12</td>
<td>1:D:374:LEU:CD1</td>
<td>2.49</td>
<td>0.42</td>
</tr>
<tr>
<td>1:D:409:ASP:N</td>
<td>1:D:409:ASP:OD1</td>
<td>2.53</td>
<td>0.42</td>
</tr>
<tr>
<td>1:C:417:THR:HB</td>
<td>1:C:418:PRO:HD2</td>
<td>2.01</td>
<td>0.42</td>
</tr>
<tr>
<td>1:C:424:TRP:CH2</td>
<td>1:C:453:ALA:HB2</td>
<td>2.55</td>
<td>0.42</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:D:272:LEU:HB2</td>
<td>1:D:307:ARG:HE</td>
<td>1.84</td>
<td>0.42</td>
</tr>
<tr>
<td>1:A:225:GLN:Oe1</td>
<td>1:A:253:GLU:CG</td>
<td>2.55</td>
<td>0.42</td>
</tr>
<tr>
<td>1:A:37:LEU:HD11</td>
<td>1:A:301:GLU:HG3</td>
<td>2.00</td>
<td>0.42</td>
</tr>
<tr>
<td>1:A:473:LYS:N</td>
<td>1:A:473:LYS:HZ3</td>
<td>2.16</td>
<td>0.42</td>
</tr>
<tr>
<td>1:C:420:GLU:HG2</td>
<td>1:C:430:VAL:HG13</td>
<td>2.02</td>
<td>0.42</td>
</tr>
<tr>
<td>1:D:187:MSE:HB3</td>
<td>1:D:188:PHE:CD2</td>
<td>2.54</td>
<td>0.42</td>
</tr>
<tr>
<td>1:D:225:GLN:NE2</td>
<td>1:D:253:GLU:HG2</td>
<td>2.30</td>
<td>0.42</td>
</tr>
<tr>
<td>1:B:347:VAL:HG12</td>
<td>1:B:347:VAL:O</td>
<td>2.18</td>
<td>0.42</td>
</tr>
<tr>
<td>1:D:322:TYR:O</td>
<td>1:D:323:LYS:C</td>
<td>2.57</td>
<td>0.42</td>
</tr>
<tr>
<td>1:D:466:ARG:C</td>
<td>1:D:468:LEU:N</td>
<td>2.73</td>
<td>0.42</td>
</tr>
<tr>
<td>1:D:91:GLU:CD</td>
<td>1:D:91:GLU:H</td>
<td>2.22</td>
<td>0.42</td>
</tr>
<tr>
<td>1:B:210:LEU:HB2</td>
<td>1:B:213:TRP:HB2</td>
<td>2.02</td>
<td>0.42</td>
</tr>
<tr>
<td>1:B:86:LEU:CD2</td>
<td>1:B:97:PHE:CE1</td>
<td>3.02</td>
<td>0.42</td>
</tr>
<tr>
<td>1:C:233:PHE:CE1</td>
<td>1:C:310:LYS:HG3</td>
<td>2.54</td>
<td>0.42</td>
</tr>
<tr>
<td>1:C:20:LYS:HG2</td>
<td>1:C:26:PHE:HA</td>
<td>2.01</td>
<td>0.42</td>
</tr>
<tr>
<td>1:C:416:LEU:HD22</td>
<td>1:C:420:GLU:HB3</td>
<td>2.02</td>
<td>0.42</td>
</tr>
<tr>
<td>1:C:96:LEU:HD21</td>
<td>1:C:448:GLN:HG3</td>
<td>2.01</td>
<td>0.42</td>
</tr>
<tr>
<td>1:A:319:ALA:N</td>
<td>1:A:320:PRO:HD3</td>
<td>2.30</td>
<td>0.42</td>
</tr>
<tr>
<td>1:B:62:TRP:HE3</td>
<td>1:B:64:LEU:HD11</td>
<td>1.84</td>
<td>0.42</td>
</tr>
<tr>
<td>1:C:406:ALA:HB3</td>
<td>1:C:449:PRO:HB3</td>
<td>2.00</td>
<td>0.42</td>
</tr>
<tr>
<td>1:D:296:GLN:N</td>
<td>1:D:296:GLN:HE21</td>
<td>2.14</td>
<td>0.42</td>
</tr>
<tr>
<td>1:A:226:ARG:HG3</td>
<td>1:A:260:TRP:CE3</td>
<td>2.55</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:34:GLN:HE21</td>
<td>1:A:34:GLN:HB2</td>
<td>1.72</td>
<td>0.41</td>
</tr>
<tr>
<td>1:C:13:LEU:C</td>
<td>1:C:15:GLN:H</td>
<td>2.23</td>
<td>0.41</td>
</tr>
<tr>
<td>1:C:206:ASP:HB3</td>
<td>1:C:209:ALA:HB2</td>
<td>2.02</td>
<td>0.41</td>
</tr>
<tr>
<td>1:C:327:PHE:CD2</td>
<td>1:C:328:PRO:HD2</td>
<td>2.55</td>
<td>0.41</td>
</tr>
<tr>
<td>1:D:195:ALA:HA</td>
<td>1:D:196:PRO:HD3</td>
<td>1.95</td>
<td>0.41</td>
</tr>
<tr>
<td>1:D:340:ILE:HD13</td>
<td>1:D:364:LEU:HD13</td>
<td>2.02</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:131:LYS:NZ</td>
<td>1:B:194:ASP:OD1</td>
<td>2.29</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:385:ILE:HD11</td>
<td>1:B:405:LEU:HD21</td>
<td>2.03</td>
<td>0.41</td>
</tr>
<tr>
<td>1:C:466:ARG:C</td>
<td>1:C:468:LEU:N</td>
<td>2.74</td>
<td>0.41</td>
</tr>
<tr>
<td>1:D:309:ARG:HH11</td>
<td>1:D:309:ARG:HB3</td>
<td>1.85</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:416:LEU:HD13</td>
<td>1:A:421:ALA:HA</td>
<td>2.02</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:454:LYS:NZ</td>
<td>1:A:454:LYS:HD2</td>
<td>2.36</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:111:LEU:HD12</td>
<td>1:B:111:LEU:HA</td>
<td>1.85</td>
<td>0.41</td>
</tr>
<tr>
<td>1:C:184:VAL:HG22</td>
<td>1:C:187:MSE:HB2</td>
<td>2.01</td>
<td>0.41</td>
</tr>
<tr>
<td>1:D:29:PHE:CD1</td>
<td>1:D:295:PRO:HD2</td>
<td>2.55</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:222:ALA:HA</td>
<td>1:A:225:GLN:HG3</td>
<td>2.03</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:434:ALA:O</td>
<td>1:A:435:ALA:HB3</td>
<td>2.20</td>
<td>0.41</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:A:210:LEU:H</td>
<td>1:A:210:LEU:HG</td>
<td>1.63</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:422:GLU:HB3</td>
<td>1:B:426:ARG:NH2</td>
<td>2.36</td>
<td>0.41</td>
</tr>
<tr>
<td>1:C:210:LEU:HB2</td>
<td>1:C:213:TRP:HB2</td>
<td>2.03</td>
<td>0.41</td>
</tr>
<tr>
<td>1:D:420:GLU:HB2</td>
<td>1:D:420:GLU:OE1</td>
<td>2.21</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:65:THR:HA</td>
<td>1:B:66:PRO:HD3</td>
<td>1.91</td>
<td>0.41</td>
</tr>
<tr>
<td>1:C:321:LYS:HA</td>
<td>1:C:321:LYS:HD2</td>
<td>1.65</td>
<td>0.41</td>
</tr>
<tr>
<td>1:C:422:GLU:HG3</td>
<td>1:C:474:LEU:HD12</td>
<td>2.02</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:146:LEU:HD11</td>
<td>1:A:173:THR:CG2</td>
<td>2.51</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:287:GLU:HG3</td>
<td>1:B:379:ARG:CD</td>
<td>2.51</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:250:ASN:O</td>
<td>1:B:254:ASN:OD1</td>
<td>2.39</td>
<td>0.41</td>
</tr>
<tr>
<td>1:C:158:LEU:HD23</td>
<td>1:C:162:ILE:CD1</td>
<td>2.51</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:466:ARG:C</td>
<td>1:B:468:LEU:H</td>
<td>2.24</td>
<td>0.41</td>
</tr>
<tr>
<td>1:D:12:PHE:HE1</td>
<td>1:D:200:GLU:OE1</td>
<td>2.04</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:336:GLU:HA</td>
<td>1:A:339:GLN:HG2</td>
<td>2.03</td>
<td>0.41</td>
</tr>
<tr>
<td>1:C:162:ILE:HG23</td>
<td>1:C:167:ILE:HB</td>
<td>2.03</td>
<td>0.41</td>
</tr>
<tr>
<td>1:C:179:VAL:HG12</td>
<td>1:C:183:ALA:HB2</td>
<td>2.03</td>
<td>0.41</td>
</tr>
<tr>
<td>1:D:318:PRO:O</td>
<td>1:D:320:PRO:CG</td>
<td>2.68</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:409:ASP:N</td>
<td>1:B:409:ASP:OD1</td>
<td>2.55</td>
<td>0.40</td>
</tr>
<tr>
<td>1:D:122:MSE:HE1</td>
<td>1:D:180:PHE:CE2</td>
<td>2.55</td>
<td>0.40</td>
</tr>
<tr>
<td>1:A:162:ILE:HG23</td>
<td>1:A:167:ILE:HB</td>
<td>2.03</td>
<td>0.40</td>
</tr>
<tr>
<td>1:B:135:ILE:H</td>
<td>1:B:135:ILE:HG12</td>
<td>1.71</td>
<td>0.40</td>
</tr>
<tr>
<td>1:B:251:GLN:NE2</td>
<td>1:B:255:GLU:HB2</td>
<td>2.36</td>
<td>0.40</td>
</tr>
<tr>
<td>1:C:184:VAL:N</td>
<td>1:C:185:PRO:CD</td>
<td>2.83</td>
<td>0.40</td>
</tr>
<tr>
<td>1:C:67:ILE:HA</td>
<td>1:C:68:PRO:HD3</td>
<td>1.97</td>
<td>0.40</td>
</tr>
<tr>
<td>1:D:341:ARG:NE</td>
<td>1:D:351:TRP:CH2</td>
<td>2.86</td>
<td>0.40</td>
</tr>
<tr>
<td>1:D:146:LEU:HD21</td>
<td>1:D:173:THR:OG1</td>
<td>2.22</td>
<td>0.40</td>
</tr>
<tr>
<td>1:B:245:SER:HA</td>
<td>1:B:304:PHE:O</td>
<td>2.21</td>
<td>0.40</td>
</tr>
<tr>
<td>1:B:455:ARG:O</td>
<td>1:B:456:ILE:C</td>
<td>2.59</td>
<td>0.40</td>
</tr>
<tr>
<td>1:C:41:ILE:HG21</td>
<td>1:C:41:ILE:HD13</td>
<td>1.77</td>
<td>0.40</td>
</tr>
<tr>
<td>1:C:41:GLU:OE1</td>
<td>1:C:446:GLN:N</td>
<td>2.54</td>
<td>0.40</td>
</tr>
<tr>
<td>1:C:44:ASN:OD1</td>
<td>1:C:44:ASN:C</td>
<td>2.60</td>
<td>0.40</td>
</tr>
</tbody>
</table>

There are no symmetry-related clashes.
5.3 Torsion angles

5.3.1 Protein backbone

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Analysed</th>
<th>Favoured</th>
<th>Allowed</th>
<th>Outliers</th>
<th>Percentiles</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>449/479 (94%)</td>
<td>408 (91%)</td>
<td>28 (6%)</td>
<td>13 (3%)</td>
<td>5 21</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>448/479 (94%)</td>
<td>401 (90%)</td>
<td>35 (8%)</td>
<td>12 (3%)</td>
<td>6 23</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>448/479 (94%)</td>
<td>401 (90%)</td>
<td>33 (7%)</td>
<td>14 (3%)</td>
<td>5 19</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>449/479 (94%)</td>
<td>403 (90%)</td>
<td>32 (7%)</td>
<td>14 (3%)</td>
<td>5 19</td>
</tr>
<tr>
<td>All</td>
<td>All</td>
<td>1794/1916 (94%)</td>
<td>1613 (90%)</td>
<td>128 (7%)</td>
<td>53 (3%)</td>
<td>5 20</td>
</tr>
</tbody>
</table>

All (53) Ramachandran outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>185</td>
<td>PRO</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>211</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>409</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>185</td>
<td>PRO</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>211</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>319</td>
<td>ALA</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>185</td>
<td>PRO</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>211</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>319</td>
<td>ALA</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>456</td>
<td>ILE</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>185</td>
<td>PRO</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>211</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>319</td>
<td>ALA</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>177</td>
<td>GLY</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>456</td>
<td>ILE</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>467</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>177</td>
<td>GLY</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>335</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>456</td>
<td>ILE</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>177</td>
<td>GLY</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>299</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>409</td>
<td>ASP</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>D</td>
<td>103</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>177</td>
<td>GLY</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>409</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>456</td>
<td>ILE</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>323</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>434</td>
<td>ALA</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>299</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>409</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>434</td>
<td>ALA</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>467</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>323</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>467</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>300</td>
<td>CYS</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>300</td>
<td>CYS</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>323</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>434</td>
<td>ALA</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>460</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>434</td>
<td>ALA</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>467</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>273</td>
<td>PRO</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>320</td>
<td>PRO</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>273</td>
<td>PRO</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>320</td>
<td>PRO</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>460</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>408</td>
<td>PRO</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>370</td>
<td>GLY</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>375</td>
<td>ILE</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>436</td>
<td>PRO</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>320</td>
<td>PRO</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>408</td>
<td>PRO</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>408</td>
<td>PRO</td>
</tr>
</tbody>
</table>

5.3.2 Protein sidechains

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Analysed</th>
<th>Rotameric</th>
<th>Outliers</th>
<th>Percentiles</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>373/385 (97%)</td>
<td>310 (83%)</td>
<td>63 (17%)</td>
<td>2 7</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>372/385 (97%)</td>
<td>314 (84%)</td>
<td>58 (16%)</td>
<td>3 9</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>372/385 (97%)</td>
<td>320 (86%)</td>
<td>52 (14%)</td>
<td>4 12</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>372/385 (97%)</td>
<td>322 (87%)</td>
<td>50 (13%)</td>
<td>4 13</td>
</tr>
<tr>
<td>All</td>
<td>All</td>
<td>1489/1540 (97%)</td>
<td>1266 (85%)</td>
<td>223 (15%)</td>
<td>3 10</td>
</tr>
</tbody>
</table>

All (223) residues with a non-rotameric sidechain are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>8</td>
<td>PHE</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>15</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>17</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>30</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>33</td>
<td>CYS</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>35</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>41</td>
<td>ILE</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>54</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>75</td>
<td>TRP</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>101</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>103</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>104</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>106</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>130</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>141</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>142</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>150</td>
<td>PHE</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>156</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>169</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>176</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>178</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>179</td>
<td>VAL</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>185</td>
<td>PRO</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>193</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>203</td>
<td>VAL</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>205</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>210</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>214</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>218</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>220</td>
<td>GLU</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>226</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>247</td>
<td>CYS</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>248</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>252</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>263</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>303</td>
<td>PHE</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>322</td>
<td>TYR</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>324</td>
<td>VAL</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>333</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>335</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>336</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>341</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>342</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>351</td>
<td>TRP</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>353</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>362</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>372</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>379</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>390</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>393</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>409</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>411</td>
<td>MSE</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>412</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>433</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>439</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>440</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>454</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>466</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>467</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>469</td>
<td>VAL</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>470</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>471</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>473</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>8</td>
<td>PHE</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>13</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>15</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>27</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>34</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>39</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>54</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>75</td>
<td>TRP</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>86</td>
<td>LEU</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>B</td>
<td>101</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>103</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>104</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>112</td>
<td>PHE</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>131</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>141</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>153</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>158</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>178</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>185</td>
<td>PRO</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>196</td>
<td>PRO</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>210</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>214</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>216</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>219</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>228</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>237</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>252</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>262</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>273</td>
<td>PRO</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>283</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>296</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>303</td>
<td>PHE</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>321</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>330</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>335</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>336</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>342</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>345</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>350</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>351</td>
<td>TRP</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>353</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>357</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>362</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>379</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>381</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>386</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>405</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>412</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>433</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>440</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>443</td>
<td>VAL</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>B</td>
<td>450</td>
<td>ILE</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>459</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>462</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>467</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>469</td>
<td>VAL</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>471</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>473</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>8</td>
<td>PHE</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>15</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>17</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>18</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>54</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>75</td>
<td>TRP</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>88</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>96</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>103</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>106</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>142</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>149</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>153</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>154</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>156</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>163</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>186</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>210</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>212</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>250</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>251</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>270</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>273</td>
<td>PRO</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>296</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>303</td>
<td>PHE</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>321</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>322</td>
<td>TYR</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>330</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>335</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>341</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>342</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>347</td>
<td>VAL</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>350</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>351</td>
<td>TRP</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>353</td>
<td>GLU</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C</td>
<td>361</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>362</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>379</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>383</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>392</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>393</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>411</td>
<td>MSE</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>426</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>431</td>
<td>TYR</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>446</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>447</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>454</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>462</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>466</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>468</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>470</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>473</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>33</td>
<td>CYS</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>34</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>37</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>41</td>
<td>ILE</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>75</td>
<td>TRP</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>89</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>101</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>104</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>106</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>119</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>132</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>138</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>149</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>176</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>178</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>179</td>
<td>VAL</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>185</td>
<td>PRO</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>205</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>210</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>218</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>225</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>226</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>250</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>273</td>
<td>PRO</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>296</td>
<td>GLN</td>
</tr>
</tbody>
</table>

Continued on next page...
Some sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (48) such sidechains are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>15</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>34</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>134</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>141</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>169</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>212</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>218</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>359</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>462</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>15</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>55</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>92</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>100</td>
<td>GLN</td>
</tr>
</tbody>
</table>
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>B</td>
<td>119</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>141</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>251</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>254</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>296</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>312</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>399</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>410</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>419</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>448</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>462</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>15</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>134</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>218</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>250</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>254</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>312</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>342</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>392</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>412</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>446</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>462</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>34</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>44</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>55</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>100</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>218</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>225</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>234</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>250</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>254</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>296</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>342</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>410</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>433</td>
<td>GLN</td>
</tr>
</tbody>
</table>

5.3.3 RNA

There are no RNA molecules in this entry.
5.4 Non-standard residues in protein, DNA, RNA chains

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates

There are no carbohydrates in this entry.

5.6 Ligand geometry

There are no ligands in this entry.

5.7 Other polymers

There are no such residues in this entry.

5.8 Polymer linkage issues

There are no chain breaks in this entry.
6 Fit of model and data

6.1 Protein, DNA and RNA chains

In the following table, the column labelled ‘#RSRZ > 2’ contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95th percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled ‘Q< 0.9’ lists the number of (and percentage) of residues with an average occupancy less than 0.9.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Analysed</th>
<th><RSRZ></th>
<th>#RSRZ>2</th>
<th>OWAB(Å2)</th>
<th>Q<0.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>448/479 (93%)</td>
<td>0.02</td>
<td>9 (2%)</td>
<td>65 62</td>
<td>51, 65, 70, 77</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>447/479 (93%)</td>
<td>-0.03</td>
<td>4 (0%)</td>
<td>84 83</td>
<td>51, 65, 70, 76</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>447/479 (93%)</td>
<td>-0.02</td>
<td>10 (2%)</td>
<td>62 59</td>
<td>51, 65, 70, 77</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>448/479 (93%)</td>
<td>0.09</td>
<td>17 (3%)</td>
<td>41 35</td>
<td>52, 65, 70, 76</td>
</tr>
<tr>
<td>All</td>
<td>All</td>
<td>1790/1916 (93%)</td>
<td>0.02</td>
<td>40 (2%)</td>
<td>62 59</td>
<td>51, 65, 70, 77</td>
</tr>
</tbody>
</table>

All (40) RSRZ outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>RSRZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>D</td>
<td>442</td>
<td>LEU</td>
<td>3.6</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>21</td>
<td>PRO</td>
<td>3.3</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>445</td>
<td>PHE</td>
<td>3.2</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>203</td>
<td>VAL</td>
<td>3.2</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>205</td>
<td>LYS</td>
<td>3.1</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>322</td>
<td>TYR</td>
<td>3.1</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>466</td>
<td>ARG</td>
<td>3.1</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>424</td>
<td>TRP</td>
<td>3.1</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>207</td>
<td>PRO</td>
<td>3.0</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>213</td>
<td>TRP</td>
<td>2.9</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>207</td>
<td>PRO</td>
<td>2.9</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>12</td>
<td>PHE</td>
<td>2.8</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>41</td>
<td>ILE</td>
<td>2.7</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>62</td>
<td>TRP</td>
<td>2.7</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>436</td>
<td>PRO</td>
<td>2.7</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>8</td>
<td>PHE</td>
<td>2.7</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>425</td>
<td>TYR</td>
<td>2.6</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>90</td>
<td>ALA</td>
<td>2.6</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>456</td>
<td>ILE</td>
<td>2.5</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>34</td>
<td>GLN</td>
<td>2.5</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>41</td>
<td>ILE</td>
<td>2.5</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>RSRZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C</td>
<td>393</td>
<td>LYS</td>
<td>2.5</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>64</td>
<td>LEU</td>
<td>2.4</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>421</td>
<td>ALA</td>
<td>2.4</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>424</td>
<td>TRP</td>
<td>2.3</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>202</td>
<td>VAL</td>
<td>2.3</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>202</td>
<td>VAL</td>
<td>2.3</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>209</td>
<td>ALA</td>
<td>2.3</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>470</td>
<td>ARG</td>
<td>2.2</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>216</td>
<td>GLU</td>
<td>2.2</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>322</td>
<td>TYR</td>
<td>2.2</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>414</td>
<td>PHE</td>
<td>2.2</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>8</td>
<td>PHE</td>
<td>2.2</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>62</td>
<td>TRP</td>
<td>2.2</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>435</td>
<td>ALA</td>
<td>2.1</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>413</td>
<td>ALA</td>
<td>2.1</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>74</td>
<td>PHE</td>
<td>2.1</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>12</td>
<td>PHE</td>
<td>2.1</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>434</td>
<td>ALA</td>
<td>2.0</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>428</td>
<td>ARG</td>
<td>2.0</td>
</tr>
</tbody>
</table>

6.2 Non-standard residues in protein, DNA, RNA chains

There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates

There are no carbohydrates in this entry.

6.4 Ligands

There are no ligands in this entry.

6.5 Other polymers

There are no such residues in this entry.