This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org
A user guide is available at
http://wwpdb.org/validation/2016/XrayValidationReportHelp
with specific help available everywhere you see the \(\text{i} \) symbol.

The following versions of software and data (see references \(\text{i} \)) were used in the production of this report:

- MolProbity : 4.02b-467
- Mogul : 1.7.2 (RC1), CSD as538be (2017)
- Xtriage (Phenix) : 1.9-1692
- EDS : trunk28620
- Percentile statistics : 20161228.v01 (using entries in the PDB archive December 28th 2016)
- Refmac : 5.8.0135
- CCP4 : 6.5.0
- Ideal geometry (proteins) : Engh & Huber (2001)
- Ideal geometry (DNA, RNA) : Parkinson et al. (1996)
- Validation Pipeline (wwPDB-VP) : recalc28949
1 Overall quality at a glance

The following experimental techniques were used to determine the structure:

X-RAY DIFFRACTION

The reported resolution of this entry is 2.35 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

<table>
<thead>
<tr>
<th>Metric</th>
<th>Whole archive (#Entries)</th>
<th>Similar resolution (#Entries, resolution range(Å))</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_{free}</td>
<td>100719</td>
<td>1522 (2.38-2.34)</td>
</tr>
<tr>
<td>Clashscore</td>
<td>112137</td>
<td>1626 (2.38-2.34)</td>
</tr>
<tr>
<td>Ramachandran outliers</td>
<td>110173</td>
<td>1605 (2.38-2.34)</td>
</tr>
<tr>
<td>Sidechain outliers</td>
<td>110143</td>
<td>1606 (2.38-2.34)</td>
</tr>
<tr>
<td>RSRZ outliers</td>
<td>101464</td>
<td>1528 (2.38-2.34)</td>
</tr>
</tbody>
</table>

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments on the lower bar indicate the fraction of residues that contain outliers for ≥ 3, 2, 1 and 0 types of geometric quality criteria. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions $\leq 5\%$. The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Length</th>
<th>Quality of chain</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>476</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>476</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>476</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>476</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>476</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>476</td>
<td></td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Length</th>
<th>Quality of chain</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>G</td>
<td>476</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>71%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>23%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>476</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>19%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>66%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>28%</td>
</tr>
</tbody>
</table>

The following table lists non-polymeric compounds, carbohydrate monomers and non-standard residues in protein, DNA, RNA chains that are outliers for geometric or electron-density-fit criteria:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Type</th>
<th>Chain</th>
<th>Res</th>
<th>Chirality</th>
<th>Geometry</th>
<th>Clashes</th>
<th>Electron density</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0QA</td>
<td>A</td>
<td>502</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td>3</td>
<td>0QA</td>
<td>B</td>
<td>502</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td>3</td>
<td>0QA</td>
<td>C</td>
<td>502</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td>3</td>
<td>0QA</td>
<td>D</td>
<td>502</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td>3</td>
<td>0QA</td>
<td>E</td>
<td>502</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td>3</td>
<td>0QA</td>
<td>F</td>
<td>502</td>
<td>-</td>
<td>-</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>4</td>
<td>GOL</td>
<td>H</td>
<td>502</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>X</td>
</tr>
</tbody>
</table>
2 Entry composition

There are 5 unique types of molecules in this entry. The entry contains 30804 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

- Molecule 1 is a protein called Cytochrome P450 2A13.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>ZeroOcc</th>
<th>AltConf</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>464</td>
<td>Total 3777 C 2430 N 653 O 676 S 18</td>
<td>8</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>464</td>
<td>Total 3771 C 2426 N 653 O 674 S 18</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>464</td>
<td>Total 3776 C 2429 N 653 O 676 S 18</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>464</td>
<td>Total 3771 C 2426 N 653 O 674 S 18</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>464</td>
<td>Total 3771 C 2426 N 653 O 674 S 18</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>464</td>
<td>Total 3771 C 2426 N 653 O 674 S 18</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>463</td>
<td>Total 3737 C 2404 N 642 O 673 S 18</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>459</td>
<td>Total 3723 C 2396 N 640 O 669 S 18</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

There are 96 discrepancies between the modelled and reference sequences:

<table>
<thead>
<tr>
<th>Chain</th>
<th>Residue</th>
<th>Modelled</th>
<th>Actual</th>
<th>Comment</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>23</td>
<td>MET</td>
<td>-</td>
<td>INITIATING METHIONINE</td>
<td>UNP Q16696</td>
</tr>
<tr>
<td>A</td>
<td>24</td>
<td>ALA</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q16696</td>
</tr>
<tr>
<td>A</td>
<td>25</td>
<td>LYS</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q16696</td>
</tr>
<tr>
<td>A</td>
<td>26</td>
<td>LYS</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q16696</td>
</tr>
<tr>
<td>A</td>
<td>27</td>
<td>THR</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q16696</td>
</tr>
<tr>
<td>A</td>
<td>28</td>
<td>SER</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q16696</td>
</tr>
<tr>
<td>A</td>
<td>29</td>
<td>SER</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q16696</td>
</tr>
<tr>
<td>A</td>
<td>30</td>
<td>LYS</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q16696</td>
</tr>
<tr>
<td>A</td>
<td>495</td>
<td>HIS</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q16696</td>
</tr>
<tr>
<td>A</td>
<td>496</td>
<td>HIS</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q16696</td>
</tr>
<tr>
<td>A</td>
<td>497</td>
<td>HIS</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q16696</td>
</tr>
<tr>
<td>A</td>
<td>498</td>
<td>HIS</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q16696</td>
</tr>
<tr>
<td>B</td>
<td>23</td>
<td>MET</td>
<td>-</td>
<td>INITIATING METHIONINE</td>
<td>UNP Q16696</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Chain</th>
<th>Residue</th>
<th>Modelled</th>
<th>Actual</th>
<th>Comment</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>24</td>
<td>ALA</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q16696</td>
</tr>
<tr>
<td>B</td>
<td>25</td>
<td>LYS</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q16696</td>
</tr>
<tr>
<td>B</td>
<td>26</td>
<td>LYS</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q16696</td>
</tr>
<tr>
<td>B</td>
<td>27</td>
<td>THR</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q16696</td>
</tr>
<tr>
<td>B</td>
<td>28</td>
<td>SER</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q16696</td>
</tr>
<tr>
<td>B</td>
<td>29</td>
<td>SER</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q16696</td>
</tr>
<tr>
<td>B</td>
<td>30</td>
<td>LYS</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q16696</td>
</tr>
<tr>
<td>B</td>
<td>495</td>
<td>HIS</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q16696</td>
</tr>
<tr>
<td>B</td>
<td>496</td>
<td>HIS</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q16696</td>
</tr>
<tr>
<td>B</td>
<td>497</td>
<td>HIS</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q16696</td>
</tr>
<tr>
<td>B</td>
<td>498</td>
<td>HIS</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q16696</td>
</tr>
<tr>
<td>C</td>
<td>23</td>
<td>MET</td>
<td>-</td>
<td>INITIATING METHIONINE</td>
<td>UNP Q16696</td>
</tr>
<tr>
<td>C</td>
<td>24</td>
<td>ALA</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q16696</td>
</tr>
<tr>
<td>C</td>
<td>25</td>
<td>LYS</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q16696</td>
</tr>
<tr>
<td>C</td>
<td>26</td>
<td>LYS</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q16696</td>
</tr>
<tr>
<td>C</td>
<td>27</td>
<td>THR</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q16696</td>
</tr>
<tr>
<td>C</td>
<td>28</td>
<td>SER</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q16696</td>
</tr>
<tr>
<td>C</td>
<td>29</td>
<td>SER</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q16696</td>
</tr>
<tr>
<td>C</td>
<td>30</td>
<td>LYS</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q16696</td>
</tr>
<tr>
<td>C</td>
<td>495</td>
<td>HIS</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q16696</td>
</tr>
<tr>
<td>C</td>
<td>496</td>
<td>HIS</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q16696</td>
</tr>
<tr>
<td>C</td>
<td>497</td>
<td>HIS</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q16696</td>
</tr>
<tr>
<td>C</td>
<td>498</td>
<td>HIS</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q16696</td>
</tr>
<tr>
<td>D</td>
<td>23</td>
<td>MET</td>
<td>-</td>
<td>INITIATING METHIONINE</td>
<td>UNP Q16696</td>
</tr>
<tr>
<td>D</td>
<td>24</td>
<td>ALA</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q16696</td>
</tr>
<tr>
<td>D</td>
<td>25</td>
<td>LYS</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q16696</td>
</tr>
<tr>
<td>D</td>
<td>26</td>
<td>LYS</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q16696</td>
</tr>
<tr>
<td>D</td>
<td>27</td>
<td>THR</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q16696</td>
</tr>
<tr>
<td>D</td>
<td>28</td>
<td>SER</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q16696</td>
</tr>
<tr>
<td>D</td>
<td>29</td>
<td>SER</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q16696</td>
</tr>
<tr>
<td>D</td>
<td>30</td>
<td>LYS</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q16696</td>
</tr>
<tr>
<td>D</td>
<td>495</td>
<td>HIS</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q16696</td>
</tr>
<tr>
<td>D</td>
<td>496</td>
<td>HIS</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q16696</td>
</tr>
<tr>
<td>D</td>
<td>497</td>
<td>HIS</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q16696</td>
</tr>
<tr>
<td>D</td>
<td>498</td>
<td>HIS</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q16696</td>
</tr>
<tr>
<td>E</td>
<td>23</td>
<td>MET</td>
<td>-</td>
<td>INITIATING METHIONINE</td>
<td>UNP Q16696</td>
</tr>
<tr>
<td>E</td>
<td>24</td>
<td>ALA</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q16696</td>
</tr>
<tr>
<td>E</td>
<td>25</td>
<td>LYS</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q16696</td>
</tr>
<tr>
<td>E</td>
<td>26</td>
<td>LYS</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q16696</td>
</tr>
<tr>
<td>E</td>
<td>27</td>
<td>THR</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q16696</td>
</tr>
<tr>
<td>E</td>
<td>28</td>
<td>SER</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q16696</td>
</tr>
<tr>
<td>E</td>
<td>29</td>
<td>SER</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q16696</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Chain</th>
<th>Residue</th>
<th>Modelled</th>
<th>Actual</th>
<th>Comment</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>30</td>
<td>LYS</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q16696</td>
</tr>
<tr>
<td>E</td>
<td>495</td>
<td>HIS</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q16696</td>
</tr>
<tr>
<td>E</td>
<td>496</td>
<td>HIS</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q16696</td>
</tr>
<tr>
<td>E</td>
<td>497</td>
<td>HIS</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q16696</td>
</tr>
<tr>
<td>E</td>
<td>498</td>
<td>HIS</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q16696</td>
</tr>
<tr>
<td>F</td>
<td>23</td>
<td>MET</td>
<td>-</td>
<td>INITIATING METHIONINE</td>
<td>UNP Q16696</td>
</tr>
<tr>
<td>F</td>
<td>24</td>
<td>ALA</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q16696</td>
</tr>
<tr>
<td>F</td>
<td>25</td>
<td>LYS</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q16696</td>
</tr>
<tr>
<td>F</td>
<td>26</td>
<td>LYS</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q16696</td>
</tr>
<tr>
<td>F</td>
<td>27</td>
<td>THR</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q16696</td>
</tr>
<tr>
<td>F</td>
<td>28</td>
<td>SER</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q16696</td>
</tr>
<tr>
<td>F</td>
<td>29</td>
<td>SER</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q16696</td>
</tr>
<tr>
<td>F</td>
<td>30</td>
<td>LYS</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q16696</td>
</tr>
<tr>
<td>F</td>
<td>495</td>
<td>HIS</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q16696</td>
</tr>
<tr>
<td>F</td>
<td>496</td>
<td>HIS</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q16696</td>
</tr>
<tr>
<td>F</td>
<td>497</td>
<td>HIS</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q16696</td>
</tr>
<tr>
<td>F</td>
<td>498</td>
<td>HIS</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q16696</td>
</tr>
<tr>
<td>G</td>
<td>23</td>
<td>MET</td>
<td>-</td>
<td>INITIATING METHIONINE</td>
<td>UNP Q16696</td>
</tr>
<tr>
<td>G</td>
<td>24</td>
<td>ALA</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q16696</td>
</tr>
<tr>
<td>G</td>
<td>25</td>
<td>LYS</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q16696</td>
</tr>
<tr>
<td>G</td>
<td>26</td>
<td>LYS</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q16696</td>
</tr>
<tr>
<td>G</td>
<td>27</td>
<td>THR</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q16696</td>
</tr>
<tr>
<td>G</td>
<td>28</td>
<td>SER</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q16696</td>
</tr>
<tr>
<td>G</td>
<td>29</td>
<td>SER</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q16696</td>
</tr>
<tr>
<td>G</td>
<td>30</td>
<td>LYS</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q16696</td>
</tr>
<tr>
<td>G</td>
<td>495</td>
<td>HIS</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q16696</td>
</tr>
<tr>
<td>G</td>
<td>496</td>
<td>HIS</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q16696</td>
</tr>
<tr>
<td>G</td>
<td>497</td>
<td>HIS</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q16696</td>
</tr>
<tr>
<td>G</td>
<td>498</td>
<td>HIS</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q16696</td>
</tr>
<tr>
<td>H</td>
<td>23</td>
<td>MET</td>
<td>-</td>
<td>INITIATING METHIONINE</td>
<td>UNP Q16696</td>
</tr>
<tr>
<td>H</td>
<td>24</td>
<td>ALA</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q16696</td>
</tr>
<tr>
<td>H</td>
<td>25</td>
<td>LYS</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q16696</td>
</tr>
<tr>
<td>H</td>
<td>26</td>
<td>LYS</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q16696</td>
</tr>
<tr>
<td>H</td>
<td>27</td>
<td>THR</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q16696</td>
</tr>
<tr>
<td>H</td>
<td>28</td>
<td>SER</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q16696</td>
</tr>
<tr>
<td>H</td>
<td>29</td>
<td>SER</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q16696</td>
</tr>
<tr>
<td>H</td>
<td>30</td>
<td>LYS</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q16696</td>
</tr>
<tr>
<td>H</td>
<td>495</td>
<td>HIS</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q16696</td>
</tr>
<tr>
<td>H</td>
<td>496</td>
<td>HIS</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q16696</td>
</tr>
<tr>
<td>H</td>
<td>497</td>
<td>HIS</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q16696</td>
</tr>
<tr>
<td>H</td>
<td>498</td>
<td>HIS</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q16696</td>
</tr>
</tbody>
</table>

- Molecule 2 is PROTOPORPHYRIN IX CONTAINING FE (three-letter code: HEM) (for-
mula: \(C_{34}H_{32}FeN_{4}O_{4} \).

![HEM Diagram](image)

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>ZeroOcc</th>
<th>AltConf</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>A</td>
<td>1</td>
<td>Total C Fe N O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>34</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>1</td>
<td>Total C Fe N O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>34</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>1</td>
<td>Total C Fe N O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>34</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>1</td>
<td>Total C Fe N O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>34</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>1</td>
<td>Total C Fe N O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>34</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>1</td>
<td>Total C Fe N O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>34</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>G</td>
<td>1</td>
<td>Total C Fe N O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>34</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>1</td>
<td>Total C Fe N O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>34</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Molecule 3 is 4-[METHYL(NITROSO)AMINO]-1-(PYRIDIN-3-YL)BUTAN-1-ONE (three-letter code: 0QA) (formula: \(C_{10}H_{13}N_{3}O_{2} \)).
- Molecule 4 is GLYCEROL (three-letter code: GOL) (formula: C₃H₈O₃).
Molecule 5 is water.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>ZeroOcc</th>
<th>AltConf</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>A</td>
<td>56</td>
<td>Total O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>56 56</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>B</td>
<td>39</td>
<td>Total O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>39 39</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>C</td>
<td>71</td>
<td>Total O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>71 71</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>D</td>
<td>49</td>
<td>Total O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>49 49</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>E</td>
<td>13</td>
<td>Total O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>13 13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>F</td>
<td>11</td>
<td>Total O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>11 11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>G</td>
<td>12</td>
<td>Total O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>12 12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>H</td>
<td>10</td>
<td>Total O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10 10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3 Residue-property plots

These plots are drawn for all protein, RNA and DNA chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ \(> 2\)). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

- Molecule 1: Cytochrome P450 2A13

Chain A:

- Molecule 1: Cytochrome P450 2A13

Chain B:

- Molecule 1: Cytochrome P450 2A13

Chain C:
- Molecule 1: Cytochrome P450 2A13

Chain D:

Chain E:

Chain F:

- Molecule 1: Cytochrome P450 2A13
• Molecule 1: Cytochrome P450 2A13

Chain G:

• Molecule 1: Cytochrome P450 2A13

Chain H:
4 Data and refinement statistics

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Space group</td>
<td>P 1</td>
<td>Depositor</td>
</tr>
<tr>
<td>Cell constants</td>
<td>71.68Å 119.27Å 153.66Å 100.59° 101.86° 93.56°</td>
<td>Depositor</td>
</tr>
<tr>
<td>Resolution (Å)</td>
<td>69.77 - 2.35</td>
<td>Depositor</td>
</tr>
<tr>
<td>% Data completeness</td>
<td>97.5 (69.77-2.35)</td>
<td>EDS</td>
</tr>
<tr>
<td>% Data completeness (in range)</td>
<td>91.0 (69.77-2.35)</td>
<td>EDS</td>
</tr>
<tr>
<td>Rmerge</td>
<td>0.07</td>
<td>Depositor</td>
</tr>
<tr>
<td>Rsym</td>
<td>0.10</td>
<td>Depositor</td>
</tr>
<tr>
<td>% completeness</td>
<td>97.5 (69.77-2.35)</td>
<td>EDS</td>
</tr>
<tr>
<td>% completeness (in range)</td>
<td>91.0 (69.77-2.35)</td>
<td>EDS</td>
</tr>
<tr>
<td>Rmerge</td>
<td>0.07</td>
<td>Depositor</td>
</tr>
<tr>
<td>Rsym</td>
<td>0.10</td>
<td>Depositor</td>
</tr>
<tr>
<td>Refinement program</td>
<td>REFMAC 6.1.13</td>
<td>Depositor</td>
</tr>
<tr>
<td>R, R_free</td>
<td>0.214, 0.273</td>
<td>Depositor</td>
</tr>
<tr>
<td>R_free test set</td>
<td>9958 reflections (5.30%)</td>
<td>DCC</td>
</tr>
<tr>
<td>Wilson B-factor (Å²)</td>
<td>42.3</td>
<td>Xtriage</td>
</tr>
<tr>
<td>Anisotropy</td>
<td>0.027</td>
<td>Xtriage</td>
</tr>
<tr>
<td>Bulk solvent ρsol(e/Å³), Bsol(Å²)</td>
<td>0.34, 46.1</td>
<td>EDS</td>
</tr>
<tr>
<td>L-test for twinning</td>
<td><</td>
<td>L</td>
</tr>
<tr>
<td>Estimated twinning fraction</td>
<td>No twinning to report.</td>
<td>Xtriage</td>
</tr>
<tr>
<td>Fa,Fc correlation</td>
<td>0.94</td>
<td>EDS</td>
</tr>
<tr>
<td>Total number of atoms</td>
<td>30804</td>
<td>wwPDB-VP</td>
</tr>
<tr>
<td>Average B, all atoms (Å²)</td>
<td>47.0</td>
<td>wwPDB-VP</td>
</tr>
</tbody>
</table>

Xtriage’s analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 7.85% of the height of the origin peak. No significant pseudotranslation is detected.

1Intensities estimated from amplitudes.
2Theoretical values of < |L| >, < L² > for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.
5 Model quality

5.1 Standard geometry

Bond lengths and bond angles in the following residue types are not validated in this section: GOL, 0QA, HEM

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with $|Z| > 5$ is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Bond lengths</th>
<th>Bond angles</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>RMSZ</td>
<td>#</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>1.01</td>
<td>2/3880 (0.1%)</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>0.99</td>
<td>3/3871 (0.1%)</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>1.04</td>
<td>4/3879 (0.1%)</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>0.99</td>
<td>1/3871 (0.0%)</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>0.85</td>
<td>0/3871</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>0.80</td>
<td>0/3871</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>0.82</td>
<td>0/3834</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>0.77</td>
<td>0/3822</td>
</tr>
<tr>
<td>All</td>
<td>All</td>
<td>0.92</td>
<td>10/30899 (0.0%)</td>
</tr>
</tbody>
</table>

All (10) bond length outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(Å)</th>
<th>Ideal(Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C</td>
<td>473</td>
<td>VAL</td>
<td>CB-CG2</td>
<td>5.94</td>
<td>1.65</td>
<td>1.52</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>383</td>
<td>PHE</td>
<td>CE2-CZ</td>
<td>5.37</td>
<td>1.47</td>
<td>1.37</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>63</td>
<td>GLU</td>
<td>CG-CG</td>
<td>5.28</td>
<td>1.59</td>
<td>1.51</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>322</td>
<td>GLU</td>
<td>CG-CG</td>
<td>5.24</td>
<td>1.59</td>
<td>1.51</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>133</td>
<td>ALA</td>
<td>CA-CB</td>
<td>5.20</td>
<td>1.63</td>
<td>1.52</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>429</td>
<td>PHE</td>
<td>CE1-CZ</td>
<td>5.20</td>
<td>1.47</td>
<td>1.37</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>80</td>
<td>VAL</td>
<td>CB-CG2</td>
<td>5.09</td>
<td>1.63</td>
<td>1.52</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>97</td>
<td>GLU</td>
<td>CD-OE1</td>
<td>5.06</td>
<td>1.31</td>
<td>1.25</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>104</td>
<td>GLN</td>
<td>CG-CG</td>
<td>5.05</td>
<td>1.62</td>
<td>1.51</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>103</td>
<td>GLU</td>
<td>CB-CG</td>
<td>-5.01</td>
<td>1.42</td>
<td>1.52</td>
</tr>
</tbody>
</table>

All (10) bond angle outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(°)</th>
<th>Ideal(°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>B</td>
<td>123</td>
<td>ARG</td>
<td>NE-CZ-NH1</td>
<td>-5.97</td>
<td>117.31</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>143</td>
<td>ARG</td>
<td>NE-CZ-NH2</td>
<td>-5.90</td>
<td>117.35</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>288</td>
<td>LEU</td>
<td>CA-CB-CG</td>
<td>5.86</td>
<td>128.78</td>
<td>115.30</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(°)</th>
<th>Ideal(°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C</td>
<td>143</td>
<td>ARG</td>
<td>NE-CZ-NH1</td>
<td>5.85</td>
<td>123.22</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>316</td>
<td>LEU</td>
<td>CA-CB-CG</td>
<td>5.79</td>
<td>128.63</td>
<td>115.30</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>417</td>
<td>LEU</td>
<td>CA-CB-CG</td>
<td>5.33</td>
<td>127.55</td>
<td>115.30</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>33</td>
<td>LEU</td>
<td>CA-CB-CG</td>
<td>5.29</td>
<td>127.45</td>
<td>115.30</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>417</td>
<td>LEU</td>
<td>CA-CB-CG</td>
<td>5.25</td>
<td>127.38</td>
<td>115.30</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>269</td>
<td>ASP</td>
<td>CB-CG-OD2</td>
<td>5.23</td>
<td>123.00</td>
<td>118.30</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>195</td>
<td>ASP</td>
<td>CB-CG-OD2</td>
<td>5.15</td>
<td>122.94</td>
<td>118.30</td>
</tr>
</tbody>
</table>

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry related clashes.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Non-H</th>
<th>H(model)</th>
<th>H(added)</th>
<th>Clashes</th>
<th>Symm-Clashes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>3777</td>
<td>0</td>
<td>3747</td>
<td>50</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>3771</td>
<td>0</td>
<td>3741</td>
<td>47</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>3776</td>
<td>0</td>
<td>3745</td>
<td>53</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>3771</td>
<td>0</td>
<td>3741</td>
<td>56</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>3771</td>
<td>0</td>
<td>3741</td>
<td>55</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>3771</td>
<td>0</td>
<td>3741</td>
<td>78</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>3737</td>
<td>0</td>
<td>3670</td>
<td>85</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>3723</td>
<td>0</td>
<td>3668</td>
<td>81</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>43</td>
<td>0</td>
<td>30</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>43</td>
<td>0</td>
<td>30</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>43</td>
<td>0</td>
<td>30</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>43</td>
<td>0</td>
<td>30</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>43</td>
<td>0</td>
<td>30</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>43</td>
<td>0</td>
<td>30</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>G</td>
<td>43</td>
<td>0</td>
<td>30</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>43</td>
<td>0</td>
<td>30</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>15</td>
<td>0</td>
<td>13</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>15</td>
<td>0</td>
<td>13</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>15</td>
<td>0</td>
<td>13</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>15</td>
<td>0</td>
<td>13</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>15</td>
<td>0</td>
<td>13</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>15</td>
<td>0</td>
<td>13</td>
<td>9</td>
<td>0</td>
</tr>
</tbody>
</table>
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Non-H</th>
<th>H(model)</th>
<th>H(added)</th>
<th>Clashes</th>
<th>Symm-Clashes</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>G</td>
<td>6</td>
<td>0</td>
<td>8</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>H</td>
<td>6</td>
<td>0</td>
<td>8</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>A</td>
<td>56</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>B</td>
<td>39</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>C</td>
<td>71</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>D</td>
<td>49</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>E</td>
<td>13</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>F</td>
<td>11</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>G</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>H</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>All</td>
<td>All</td>
<td>30804</td>
<td>0</td>
<td>30128</td>
<td>524</td>
<td>0</td>
</tr>
</tbody>
</table>

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 9.

All (524) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:C:32:LYS:HD2</td>
<td>1:C:33:LEU:H</td>
<td>1.09</td>
<td>1.07</td>
</tr>
<tr>
<td>1:D:381:ARG:O</td>
<td>1:D:382:ASP:HB2</td>
<td>1.55</td>
<td>1.03</td>
</tr>
<tr>
<td>1:D:143:ARG:HH12</td>
<td>1:D:147:GLU:HB2</td>
<td>1.22</td>
<td>1.03</td>
</tr>
<tr>
<td>3:B:502:0QA:O1</td>
<td>3:B:502:0QA:H5</td>
<td>1.58</td>
<td>0.99</td>
</tr>
<tr>
<td>3:F:502:0QA:O1</td>
<td>3:F:502:0QA:H1</td>
<td>1.64</td>
<td>0.97</td>
</tr>
<tr>
<td>1:B:77:ARG:HG2</td>
<td>1:B:77:ARG:HH11</td>
<td>1.31</td>
<td>0.95</td>
</tr>
<tr>
<td>1:C:59:MET:CE</td>
<td>1:C:394:MET:HE2</td>
<td>1.99</td>
<td>0.91</td>
</tr>
<tr>
<td>1:D:341:PRO:HG3</td>
<td>1:D:454:THR:HG22</td>
<td>1.54</td>
<td>0.90</td>
</tr>
<tr>
<td>1:E:172:PHE:O</td>
<td>1:E:176:ARG:HG3</td>
<td>1.72</td>
<td>0.89</td>
</tr>
<tr>
<td>1:C:32:LYS:HD2</td>
<td>1:C:33:LEU:N</td>
<td>1.89</td>
<td>0.86</td>
</tr>
<tr>
<td>1:D:77:ARG:HG2</td>
<td>1:D:77:ARG:HH11</td>
<td>1.40</td>
<td>0.86</td>
</tr>
<tr>
<td>1:D:143:ARG:NH1</td>
<td>1:D:147:GLU:HB2</td>
<td>1.91</td>
<td>0.85</td>
</tr>
<tr>
<td>1:C:125:LYS:HE2</td>
<td>1:C:129:ARG:HH22</td>
<td>1.39</td>
<td>0.85</td>
</tr>
<tr>
<td>1:G:216:THR:HG21</td>
<td>1:G:233:PRO:HG2</td>
<td>1.56</td>
<td>0.85</td>
</tr>
<tr>
<td>1:C:59:MET:CE</td>
<td>1:C:394:MET:CE</td>
<td>2.56</td>
<td>0.84</td>
</tr>
<tr>
<td>1:A:381:ARG:O</td>
<td>1:A:382:ASP:HB2</td>
<td>1.79</td>
<td>0.83</td>
</tr>
<tr>
<td>1:G:53:GLN:OE1</td>
<td>1:G:53:GLN:HA</td>
<td>1.77</td>
<td>0.82</td>
</tr>
<tr>
<td>1:A:342:LYS:HE3</td>
<td>1:A:344:GLU:OE1</td>
<td>1.80</td>
<td>0.81</td>
</tr>
<tr>
<td>1:F:139:GLY:O</td>
<td>1:F:145:ILE:HB</td>
<td>1.81</td>
<td>0.81</td>
</tr>
<tr>
<td>1:E:450:PHE:O</td>
<td>1:E:454:THR:HB</td>
<td>1.82</td>
<td>0.80</td>
</tr>
<tr>
<td>1:F:433:SER:HB3</td>
<td>2:F:501:HEM:HBA1</td>
<td>1.64</td>
<td>0.79</td>
</tr>
<tr>
<td>1:B:165:GLY:O</td>
<td>1:B:490:SER:HB2</td>
<td>1.82</td>
<td>0.79</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:G:476:LYS:HG3</td>
<td>1:G:477:HIS:H</td>
<td>1.47</td>
<td>0.78</td>
</tr>
<tr>
<td>1:H:187:PHE:CE1</td>
<td>1:H:251:LYS:HB3</td>
<td>2.20</td>
<td>0.77</td>
</tr>
<tr>
<td>1:C:327:VAL:HG11</td>
<td>1:C:457:MET:CE</td>
<td>2.15</td>
<td>0.76</td>
</tr>
<tr>
<td>1:C:305:THR:HG21</td>
<td>3:C:502:0QA:O2</td>
<td>1.86</td>
<td>0.75</td>
</tr>
<tr>
<td>1:F:262:ASN:O</td>
<td>1:F:264:PRO:HD3</td>
<td>1.85</td>
<td>0.75</td>
</tr>
<tr>
<td>1:H:73:LEU:HB3</td>
<td>1:H:222:MET:HG2</td>
<td>1.67</td>
<td>0.75</td>
</tr>
<tr>
<td>1:D:452:PHE:O</td>
<td>1:D:456:ILE:HD12</td>
<td>1.87</td>
<td>0.74</td>
</tr>
<tr>
<td>1:A:77:ARG:HH11</td>
<td>1:A:77:ARG:CG</td>
<td>1.99</td>
<td>0.74</td>
</tr>
<tr>
<td>1:C:327:VAL:HG11</td>
<td>1:C:457:MET:HE2</td>
<td>1.70</td>
<td>0.73</td>
</tr>
<tr>
<td>3:D:502:0QA:O1</td>
<td>3:D:502:0QA:H5</td>
<td>1.88</td>
<td>0.73</td>
</tr>
<tr>
<td>1:G:182:ILE:HD11</td>
<td>1:G:302:GLY:HA3</td>
<td>1.70</td>
<td>0.73</td>
</tr>
<tr>
<td>1:D:143:ARG:HH12</td>
<td>1:D:147:GLU:CB</td>
<td>2.00</td>
<td>0.73</td>
</tr>
<tr>
<td>1:C:32:LYS:CD</td>
<td>1:C:33:LEU:H</td>
<td>1.96</td>
<td>0.72</td>
</tr>
<tr>
<td>1:A:142:LYS:HG3</td>
<td>1:A:143:ARG:N</td>
<td>2.04</td>
<td>0.72</td>
</tr>
<tr>
<td>3:C:502:0QA:O1</td>
<td>3:C:502:0QA:H5</td>
<td>1.88</td>
<td>0.72</td>
</tr>
<tr>
<td>1:C:59:MET:HE1</td>
<td>1:C:394:MET:CE</td>
<td>2.19</td>
<td>0.72</td>
</tr>
<tr>
<td>1:D:381:ARG:O</td>
<td>1:D:382:ASP:CB</td>
<td>2.27</td>
<td>0.72</td>
</tr>
<tr>
<td>1:H:320:His:HB3</td>
<td>1:H:323:VAL:HG22</td>
<td>1.72</td>
<td>0.71</td>
</tr>
<tr>
<td>1:B:77:ARG:CG</td>
<td>1:B:77:ARG:HH11</td>
<td>2.00</td>
<td>0.71</td>
</tr>
<tr>
<td>1:A:433:SER:HB3</td>
<td>2:A:501:HEM:HBA1</td>
<td>1.73</td>
<td>0.70</td>
</tr>
<tr>
<td>1:F:174:LEU:HD21</td>
<td>1:F:314:PHE:HE1</td>
<td>1.56</td>
<td>0.70</td>
</tr>
<tr>
<td>1:H:114:TYR:CE1</td>
<td>1:H:123:ARG:NH1</td>
<td>2.59</td>
<td>0.70</td>
</tr>
<tr>
<td>1:F:271:PHE:CE2</td>
<td>1:F:291:LEU:HB2</td>
<td>2.27</td>
<td>0.70</td>
</tr>
<tr>
<td>3:A:502:0QA:H5</td>
<td>3:A:502:0QA:O1</td>
<td>1.89</td>
<td>0.69</td>
</tr>
<tr>
<td>1:E:376:LYS:HA</td>
<td>1:E:387:LYS:HG3</td>
<td>1.73</td>
<td>0.69</td>
</tr>
<tr>
<td>1:A:342:LYS:HG3</td>
<td>1:A:344:GLU:HG3</td>
<td>1.74</td>
<td>0.69</td>
</tr>
<tr>
<td>1:H:178:VAL:HG11</td>
<td>1:H:306:VAL:HB</td>
<td>1.74</td>
<td>0.69</td>
</tr>
<tr>
<td>1:B:143:ARG:O</td>
<td>1:B:147:GLU:HG2</td>
<td>1.92</td>
<td>0.69</td>
</tr>
<tr>
<td>1:H:407:ASN:O</td>
<td>1:H:415:HIS:NE2</td>
<td>2.25</td>
<td>0.69</td>
</tr>
<tr>
<td>2:H:501:HEM:HB2</td>
<td>2:H:501:HEM:HMB1</td>
<td>1.75</td>
<td>0.68</td>
</tr>
<tr>
<td>1:G:109:TRP:CH2</td>
<td>1:G:238:PHE:HB3</td>
<td>2.28</td>
<td>0.68</td>
</tr>
<tr>
<td>1:H:441:GLY:HA3</td>
<td>2:H:501:HEM:C3C</td>
<td>2.29</td>
<td>0.68</td>
</tr>
<tr>
<td>1:H:372:His:O</td>
<td>1:H:391:VAL:N</td>
<td>2.23</td>
<td>0.68</td>
</tr>
<tr>
<td>1:E:205:MET:HE1</td>
<td>1:E:303:THR:HG21</td>
<td>1.76</td>
<td>0.67</td>
</tr>
<tr>
<td>1:H:92:VAL:HG23</td>
<td>1:H:434:ILE:HG13</td>
<td>1.76</td>
<td>0.67</td>
</tr>
<tr>
<td>1:G:315:LEU:HB2</td>
<td>1:G:487:TYR:CE2</td>
<td>2.29</td>
<td>0.67</td>
</tr>
<tr>
<td>1:C:59:MET:HE1</td>
<td>1:C:394:MET:HE2</td>
<td>1.73</td>
<td>0.67</td>
</tr>
<tr>
<td>1:C:265:ARG:HB2</td>
<td>1:C:269:ASP:OD1</td>
<td>1.94</td>
<td>0.67</td>
</tr>
<tr>
<td>1:C:453:PHE:O</td>
<td>1:C:457:MET:HG2</td>
<td>1.93</td>
<td>0.67</td>
</tr>
</tbody>
</table>

Continued on next page...
<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:G:478:VAL:O</td>
<td>1:G:478:VAL:HG12</td>
<td>1.94</td>
<td>0.67</td>
</tr>
<tr>
<td>1:C:125:LYS:CE</td>
<td>1:C:129:ARG:HH22</td>
<td>2.08</td>
<td>0.67</td>
</tr>
<tr>
<td>1:A:60:LYS:HG3</td>
<td>1:D:403:ARG:NH2</td>
<td>2.10</td>
<td>0.66</td>
</tr>
<tr>
<td>1:F:407:ASN:HB3</td>
<td>1:F:410:ASP:HB2</td>
<td>1.71</td>
<td>0.66</td>
</tr>
<tr>
<td>1:H:54:MET:HB2</td>
<td>1:H:479:GLY:HA2</td>
<td>1.78</td>
<td>0.66</td>
</tr>
<tr>
<td>2:D:501:HEM:C4D</td>
<td>3:D:502:0QA:H1</td>
<td>2.28</td>
<td>0.66</td>
</tr>
<tr>
<td>1:F:297:ASN:HA</td>
<td>3:F:502:0QA:N1</td>
<td>2.11</td>
<td>0.66</td>
</tr>
<tr>
<td>1:D:341:PRO:CG</td>
<td>1:D:454:THR:HB22</td>
<td>2.26</td>
<td>0.66</td>
</tr>
<tr>
<td>1:B:122:GLU:HA</td>
<td>1:B:122:GLU:OE2</td>
<td>1.97</td>
<td>0.65</td>
</tr>
<tr>
<td>1:E:302:GLY:HA2</td>
<td>2:E:501:HEM:HMC2</td>
<td>1.79</td>
<td>0.65</td>
</tr>
<tr>
<td>1:F:323:VAL:O</td>
<td>1:F:327:VAL:HG23</td>
<td>1.96</td>
<td>0.65</td>
</tr>
<tr>
<td>1:F:450:PHE:O</td>
<td>1:F:454:THR:HB</td>
<td>1.96</td>
<td>0.65</td>
</tr>
<tr>
<td>1:H:179:SER:O</td>
<td>1:H:183:SER:HB2</td>
<td>1.97</td>
<td>0.65</td>
</tr>
<tr>
<td>1:C:139:GLY:HA2</td>
<td>1:C:142:LYS:HD2</td>
<td>1.78</td>
<td>0.64</td>
</tr>
<tr>
<td>1:F:288:LEU:O</td>
<td>1:F:292:VAL:HG23</td>
<td>1.97</td>
<td>0.64</td>
</tr>
<tr>
<td>1:A:381:ARG:O</td>
<td>1:A:382:ASP:CB</td>
<td>2.42</td>
<td>0.64</td>
</tr>
<tr>
<td>1:D:409:ARG:HG2</td>
<td>5:D:631:HOH:O</td>
<td>1.98</td>
<td>0.64</td>
</tr>
<tr>
<td>1:E:453:PHE:O</td>
<td>1:E:457:MET:HB2</td>
<td>1.97</td>
<td>0.64</td>
</tr>
<tr>
<td>1:D:166:ALA:O</td>
<td>1:D:409:SER:HB3</td>
<td>1.98</td>
<td>0.64</td>
</tr>
<tr>
<td>1:D:53:GLN:HG3</td>
<td>1:D:56:ASN:HB2</td>
<td>1.80</td>
<td>0.64</td>
</tr>
<tr>
<td>1:E:297:ASN:HA</td>
<td>3:E:502:0QA:N1</td>
<td>2.13</td>
<td>0.64</td>
</tr>
<tr>
<td>1:C:453:PHE:O</td>
<td>1:C:457:MET:CG</td>
<td>2.46</td>
<td>0.64</td>
</tr>
<tr>
<td>2:G:501:HEM:HBB2</td>
<td>2:G:501:HEM:HMB2</td>
<td>1.78</td>
<td>0.64</td>
</tr>
<tr>
<td>1:C:77:ARG:NH2</td>
<td>1:C:386:PRO:HG2</td>
<td>2.13</td>
<td>0.63</td>
</tr>
<tr>
<td>1:E:301:ALA:HA</td>
<td>3:E:502:0QA:H3</td>
<td>1.80</td>
<td>0.63</td>
</tr>
<tr>
<td>1:E:332:ASP:OD2</td>
<td>1:E:494:ARG:NH2</td>
<td>2.28</td>
<td>0.63</td>
</tr>
<tr>
<td>1:F:345:ASP:O</td>
<td>1:F:349:MET:HG3</td>
<td>1.98</td>
<td>0.63</td>
</tr>
<tr>
<td>2:E:501:HEM:HMB1</td>
<td>2:E:501:HEM:HBB2</td>
<td>1.81</td>
<td>0.63</td>
</tr>
<tr>
<td>1:D:143:ARG:HH11</td>
<td>1:D:143:ARG:HG3</td>
<td>1.64</td>
<td>0.62</td>
</tr>
<tr>
<td>1:F:448:GLU:O</td>
<td>1:F:452:PHE:CD2</td>
<td>2.51</td>
<td>0.62</td>
</tr>
<tr>
<td>1:H:372:HIS:NE2</td>
<td>2:H:501:HEM:O1A</td>
<td>2.29</td>
<td>0.62</td>
</tr>
<tr>
<td>1:C:77:ARG:HH22</td>
<td>1:C:386:PRO:HG2</td>
<td>1.64</td>
<td>0.62</td>
</tr>
<tr>
<td>1:D:77:ARG:CG</td>
<td>1:D:77:ARG:HH11</td>
<td>2.11</td>
<td>0.62</td>
</tr>
<tr>
<td>1:A:342:LYS:HG3</td>
<td>1:A:344:GLU:CG</td>
<td>2.30</td>
<td>0.61</td>
</tr>
<tr>
<td>1:D:375:ASN:O</td>
<td>1:D:387:LYS:HG3</td>
<td>2.00</td>
<td>0.61</td>
</tr>
<tr>
<td>1:G:476:LYS:HG3</td>
<td>1:G:477:HIS:N</td>
<td>2.15</td>
<td>0.61</td>
</tr>
</tbody>
</table>

Continued on next page...
<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:H:104:GLN:NE2</td>
<td>1:H:118:PHE:CE1</td>
<td>2.69</td>
<td>0.61</td>
</tr>
<tr>
<td>1:E:53:GLN:HG3</td>
<td>1:E:56:ASN:HB2</td>
<td>1.81</td>
<td>0.61</td>
</tr>
<tr>
<td>1:G:33:LEU:HD21</td>
<td>1:G:77:ARG:HD2</td>
<td>1.82</td>
<td>0.61</td>
</tr>
<tr>
<td>3:C:502:0QA:O1</td>
<td>3:C:502:0QA:C9</td>
<td>2.48</td>
<td>0.61</td>
</tr>
<tr>
<td>3:D:502:0QA:C9</td>
<td>3:D:502:0QA:O1</td>
<td>2.48</td>
<td>0.61</td>
</tr>
<tr>
<td>1:E:205:MET:CE</td>
<td>1:E:303:THR:HG21</td>
<td>2.30</td>
<td>0.61</td>
</tr>
<tr>
<td>1:H:146:GLU:C</td>
<td>1:H:148:ARG:H</td>
<td>2.05</td>
<td>0.61</td>
</tr>
<tr>
<td>1:C:59:MET:HE3</td>
<td>1:C:394:MET:CE</td>
<td>2.31</td>
<td>0.60</td>
</tr>
<tr>
<td>1:F:343:PHE:CE1</td>
<td>1:F:447:MET:HA</td>
<td>2.37</td>
<td>0.60</td>
</tr>
<tr>
<td>1:G:365:MET:HA</td>
<td>1:G:365:MET:CE</td>
<td>2.32</td>
<td>0.60</td>
</tr>
<tr>
<td>1:H:363:GLY:O</td>
<td>1:H:365:MET:CE</td>
<td>2.49</td>
<td>0.60</td>
</tr>
<tr>
<td>1:D:379:LYS:HD3</td>
<td>5:D:640:HOH:O</td>
<td>2.02</td>
<td>0.59</td>
</tr>
<tr>
<td>1:F:308:THR:HB</td>
<td>1:F:365:MET:CE</td>
<td>2.32</td>
<td>0.59</td>
</tr>
<tr>
<td>1:A:179:SER:HB2</td>
<td>1:A:303:THR:HG23</td>
<td>1.83</td>
<td>0.59</td>
</tr>
<tr>
<td>1:D:341:PRO:HG3</td>
<td>1:D:454:THR:CG2</td>
<td>2.30</td>
<td>0.59</td>
</tr>
<tr>
<td>1:D:342:LYS:HE2</td>
<td>1:D:344:GLU:OE1</td>
<td>2.02</td>
<td>0.59</td>
</tr>
<tr>
<td>1:H:432:PHE:CG</td>
<td>1:H:442:GLU:HG3</td>
<td>2.37</td>
<td>0.59</td>
</tr>
<tr>
<td>1:F:375:ASN:O</td>
<td>1:F:387:LYS:HG3</td>
<td>2.02</td>
<td>0.59</td>
</tr>
<tr>
<td>1:C:172:PHE:O</td>
<td>1:C:176:ARG:HG3</td>
<td>2.02</td>
<td>0.59</td>
</tr>
<tr>
<td>1:G:215:SER:N</td>
<td>4:G:502:GOL:O3</td>
<td>2.28</td>
<td>0.59</td>
</tr>
<tr>
<td>1:B:77:ARG:NH1</td>
<td>5:B:612:HOH:O</td>
<td>2.35</td>
<td>0.58</td>
</tr>
<tr>
<td>1:A:297:ASN:HA</td>
<td>3:A:502:0QA:N1</td>
<td>2.18</td>
<td>0.58</td>
</tr>
<tr>
<td>1:A:142:LYS:HG3</td>
<td>1:A:144:GLY:H</td>
<td>1.68</td>
<td>0.58</td>
</tr>
<tr>
<td>1:D:220:TYR:CZ</td>
<td>1:D:224:SER:HB2</td>
<td>2.39</td>
<td>0.58</td>
</tr>
<tr>
<td>1:A:197:GLU:O</td>
<td>1:A:200:SER:HB3</td>
<td>2.04</td>
<td>0.57</td>
</tr>
<tr>
<td>1:G:125:LYS:O</td>
<td>1:G:129:ARG:HB2</td>
<td>2.05</td>
<td>0.57</td>
</tr>
<tr>
<td>1:F:305:THR:HA</td>
<td>1:F:365:MET:CE</td>
<td>2.34</td>
<td>0.57</td>
</tr>
<tr>
<td>1:H:363:GLY:O</td>
<td>1:H:365:MET:HE2</td>
<td>2.05</td>
<td>0.57</td>
</tr>
<tr>
<td>1:F:308:THR:HB</td>
<td>1:F:365:MET:HE1</td>
<td>1.86</td>
<td>0.57</td>
</tr>
<tr>
<td>1:G:209:PHE:HE2</td>
<td>1:G:300:PHE:HD1</td>
<td>1.52</td>
<td>0.57</td>
</tr>
<tr>
<td>1:B:77:ARG:HG2</td>
<td>1:B:77:ARG:NH1</td>
<td>2.11</td>
<td>0.57</td>
</tr>
<tr>
<td>1:C:332:ASP:CG</td>
<td>1:C:494:ARG:HH22</td>
<td>2.08</td>
<td>0.57</td>
</tr>
<tr>
<td>1:G:178:VAL:HG11</td>
<td>1:G:303:THR:O</td>
<td>2.05</td>
<td>0.57</td>
</tr>
<tr>
<td>2:C:501:HEM:C4D</td>
<td>3:C:502:0QA:H1</td>
<td>2.33</td>
<td>0.56</td>
</tr>
<tr>
<td>1:C:210:GLN:HG3</td>
<td>1:C:483:ILE:HG13</td>
<td>1.87</td>
<td>0.56</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:E:142:LYS:HG2</td>
<td>1:E:143:ARG:HH22</td>
<td>1.70</td>
<td>0.56</td>
</tr>
<tr>
<td>1:F:373:ARG:HD3</td>
<td>1:F:388:GLY:HA2</td>
<td>1.86</td>
<td>0.56</td>
</tr>
<tr>
<td>1:G:315:LEU:HB2</td>
<td>1:G:487:TYR:HE2</td>
<td>1.68</td>
<td>0.56</td>
</tr>
<tr>
<td>1:F:143:ARG:O</td>
<td>1:F:147:GLU:HG2</td>
<td>2.05</td>
<td>0.56</td>
</tr>
<tr>
<td>1:G:375:ASN:O</td>
<td>1:G:387:LYS:HG3</td>
<td>2.06</td>
<td>0.56</td>
</tr>
<tr>
<td>1:H:51:THR:HG23</td>
<td>1:H:218:GLN:HB2</td>
<td>1.88</td>
<td>0.56</td>
</tr>
<tr>
<td>1:D:476:LYS:NZ</td>
<td>5:D:604:HOH:O</td>
<td>2.38</td>
<td>0.56</td>
</tr>
<tr>
<td>1:F:381:ARG:O</td>
<td>1:F:382:ASP:HB2</td>
<td>2.04</td>
<td>0.56</td>
</tr>
<tr>
<td>1:H:372:HIS:HE1</td>
<td>1:H:437:ARG:HB2</td>
<td>1.70</td>
<td>0.56</td>
</tr>
<tr>
<td>1:G:151:GLU:O</td>
<td>1:G:155:PHE:HD2</td>
<td>1.88</td>
<td>0.56</td>
</tr>
<tr>
<td>1:A:468:PRO:HA</td>
<td>1:A:471:ILE:HD12</td>
<td>1.87</td>
<td>0.56</td>
</tr>
<tr>
<td>1:D:124:ALA:O</td>
<td>1:D:128:ARG:HB2</td>
<td>2.06</td>
<td>0.56</td>
</tr>
<tr>
<td>1:H:382:ASP:OD1</td>
<td>1:H:382:ASP:N</td>
<td>2.39</td>
<td>0.56</td>
</tr>
<tr>
<td>1:H:114:TYR:HE1</td>
<td>1:H:123:ARG:NH1</td>
<td>2.03</td>
<td>0.56</td>
</tr>
<tr>
<td>1:G:278:GLU:HG2</td>
<td>1:G:284:THR:OG1</td>
<td>2.05</td>
<td>0.55</td>
</tr>
<tr>
<td>1:B:453:PHE:O</td>
<td>1:B:457:MET:HB2</td>
<td>2.06</td>
<td>0.55</td>
</tr>
<tr>
<td>1:G:178:VAL:CG1</td>
<td>1:G:303:THR:HA</td>
<td>2.36</td>
<td>0.55</td>
</tr>
<tr>
<td>1:H:401:ASP:HB3</td>
<td>1:H:404:PHE:HB2</td>
<td>1.88</td>
<td>0.55</td>
</tr>
<tr>
<td>1:G:215:SER:HB3</td>
<td>4:G:502:GOL:O3</td>
<td>2.05</td>
<td>0.55</td>
</tr>
<tr>
<td>1:E:142:LYS:HG2</td>
<td>1:E:143:ARG:NH2</td>
<td>2.22</td>
<td>0.55</td>
</tr>
<tr>
<td>1:A:77:ARG:NH1</td>
<td>1:A:77:ARG:HG2</td>
<td>2.08</td>
<td>0.54</td>
</tr>
<tr>
<td>1:G:361:ARG:NH1</td>
<td>1:G:399:LEU:O</td>
<td>2.37</td>
<td>0.54</td>
</tr>
<tr>
<td>1:H:95:ALA:O</td>
<td>1:H:99:SER:HB3</td>
<td>2.07</td>
<td>0.54</td>
</tr>
<tr>
<td>1:A:142:LYS:CG</td>
<td>1:A:144:GLY:H</td>
<td>2.21</td>
<td>0.54</td>
</tr>
<tr>
<td>1:D:355:VAL:O</td>
<td>1:D:359:ILE:HG13</td>
<td>2.08</td>
<td>0.54</td>
</tr>
<tr>
<td>1:H:355:VAL:O</td>
<td>1:H:359:ILE:HG12</td>
<td>2.08</td>
<td>0.54</td>
</tr>
<tr>
<td>1:A:123:ARG:HA</td>
<td>1:A:285:GLU:HG3</td>
<td>1.89</td>
<td>0.54</td>
</tr>
<tr>
<td>1:F:448:GLU:O</td>
<td>1:F:452:PHE:HD2</td>
<td>1.91</td>
<td>0.54</td>
</tr>
<tr>
<td>1:C:59:MET:CE</td>
<td>1:C:394:MET:HE3</td>
<td>2.37</td>
<td>0.54</td>
</tr>
<tr>
<td>1:B:101:ARG:HD2</td>
<td>1:B:117:ALA:O</td>
<td>2.08</td>
<td>0.54</td>
</tr>
<tr>
<td>1:F:103:GLU:HB2</td>
<td>1:F:108:ASP:OD2</td>
<td>2.08</td>
<td>0.54</td>
</tr>
<tr>
<td>1:F:89:GLU:O</td>
<td>1:F:93:ASP:HB2</td>
<td>2.08</td>
<td>0.54</td>
</tr>
<tr>
<td>1:G:139:GLY:CA</td>
<td>1:G:145:ILE:HG12</td>
<td>2.38</td>
<td>0.54</td>
</tr>
<tr>
<td>1:E:253:GLU:HA</td>
<td>1:E:256:GLN:HG3</td>
<td>1.90</td>
<td>0.53</td>
</tr>
<tr>
<td>1:G:453:PHE:O</td>
<td>1:G:457:MET:HG3</td>
<td>2.08</td>
<td>0.53</td>
</tr>
<tr>
<td>1:G:478:VAL:HG22</td>
<td>1:G:482:THR:HG23</td>
<td>1.89</td>
<td>0.53</td>
</tr>
<tr>
<td>1:E:101:ARG:HZ</td>
<td>1:E:370:LEU:HD23</td>
<td>2.38</td>
<td>0.53</td>
</tr>
<tr>
<td>1:E:254:HIS:C</td>
<td>1:E:254:HIS:ND1</td>
<td>2.62</td>
<td>0.53</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:E:444:LEU:O</td>
<td>1:E:448:GLU:HG3</td>
<td>2.09</td>
<td>0.53</td>
</tr>
<tr>
<td>1:A:419:LYS:HB2</td>
<td>1:A:420:LYS:HE2</td>
<td>1.89</td>
<td>0.53</td>
</tr>
<tr>
<td>1:F:259:LEU:O</td>
<td>1:F:261:PRO:HD3</td>
<td>2.08</td>
<td>0.53</td>
</tr>
<tr>
<td>1:H:407:ASN:H</td>
<td>1:H:415:HIS:HE1</td>
<td>1.56</td>
<td>0.53</td>
</tr>
<tr>
<td>1:G:139:GLY:HA2</td>
<td>1:G:145:ILE:HG12</td>
<td>1.90</td>
<td>0.53</td>
</tr>
<tr>
<td>1:A:67:PRO:HG3</td>
<td>1:D:63:GLU:O</td>
<td>2.09</td>
<td>0.53</td>
</tr>
<tr>
<td>1:F:53:GLN:HG3</td>
<td>1:F:56:ASN:OD1</td>
<td>2.09</td>
<td>0.52</td>
</tr>
<tr>
<td>1:G:433:SER:HB3</td>
<td>2:G:501:HEM:HBA1</td>
<td>1.91</td>
<td>0.52</td>
</tr>
<tr>
<td>1:A:104:GLN:NE2</td>
<td>1:A:221:GLU:OE2</td>
<td>2.43</td>
<td>0.52</td>
</tr>
<tr>
<td>1:C:244:LEU:HB3</td>
<td>1:C:296:LEU:HD11</td>
<td>1.92</td>
<td>0.52</td>
</tr>
<tr>
<td>3:B:502:0QA:O1</td>
<td>3:B:502:0QA:C9</td>
<td>2.44</td>
<td>0.52</td>
</tr>
<tr>
<td>1:G:288:LEU:O</td>
<td>1:G:292:VAL:HG23</td>
<td>2.09</td>
<td>0.52</td>
</tr>
<tr>
<td>1:G:461:ARG:HB3</td>
<td>1:G:494:ARG:HD3</td>
<td>1.91</td>
<td>0.52</td>
</tr>
<tr>
<td>1:B:321:PRO:HD2</td>
<td>1:B:322:GLU:OE2</td>
<td>2.10</td>
<td>0.52</td>
</tr>
<tr>
<td>1:F:373:ARG:NH1</td>
<td>1:F:388:GLY:O</td>
<td>2.43</td>
<td>0.52</td>
</tr>
<tr>
<td>1:G:316:LEU:O</td>
<td>1:G:317:LEU:HB2</td>
<td>2.10</td>
<td>0.52</td>
</tr>
<tr>
<td>1:D:110:LEU:HD22</td>
<td>1:D:241:LEU:HB3</td>
<td>1.92</td>
<td>0.52</td>
</tr>
<tr>
<td>1:E:123:ARG:O</td>
<td>1:E:127:LEU:HG</td>
<td>2.08</td>
<td>0.52</td>
</tr>
<tr>
<td>1:C:181:VAL:O</td>
<td>1:C:184:SER:HB2</td>
<td>2.09</td>
<td>0.52</td>
</tr>
<tr>
<td>3:F:502:0QA:O1</td>
<td>3:F:502:0QA:C10</td>
<td>2.49</td>
<td>0.52</td>
</tr>
<tr>
<td>1:H:265:ARG:HB2</td>
<td>1:H:269:ASP:OD2</td>
<td>2.09</td>
<td>0.52</td>
</tr>
<tr>
<td>1:C:271:PHE:CE2</td>
<td>1:C:291:LEU:HB2</td>
<td>2.45</td>
<td>0.51</td>
</tr>
<tr>
<td>1:G:439:CYS:HB2</td>
<td>2:G:501:HEM:NA</td>
<td>2.25</td>
<td>0.51</td>
</tr>
<tr>
<td>1:A:381:ARG:HB3</td>
<td>1:D:64:ARG:HH21</td>
<td>1.74</td>
<td>0.51</td>
</tr>
<tr>
<td>1:H:322:GLU:O</td>
<td>1:H:325:ALA:HB3</td>
<td>2.10</td>
<td>0.51</td>
</tr>
<tr>
<td>1:A:271:PHE:CD2</td>
<td>1:A:291:LEU:HB2</td>
<td>2.45</td>
<td>0.51</td>
</tr>
<tr>
<td>1:G:99:SER:HB2</td>
<td>1:G:436:LYS:HB3</td>
<td>1.92</td>
<td>0.51</td>
</tr>
<tr>
<td>1:H:469:LYS:HG3</td>
<td>1:H:469:LYS:O</td>
<td>2.10</td>
<td>0.51</td>
</tr>
<tr>
<td>1:F:118:PHE:CE2</td>
<td>1:F:370:LEU:HD11</td>
<td>2.44</td>
<td>0.51</td>
</tr>
<tr>
<td>1:F:327:VAL:O</td>
<td>1:F:331:ILE:HG13</td>
<td>2.11</td>
<td>0.51</td>
</tr>
<tr>
<td>2:H:501:HEM:HB2</td>
<td>2:H:501:HEM:CMB</td>
<td>2.38</td>
<td>0.51</td>
</tr>
<tr>
<td>1:B:432:PHE:HB3</td>
<td>1:B:439:CYS:HB3</td>
<td>1.93</td>
<td>0.51</td>
</tr>
<tr>
<td>1:C:476:LYS:HB2</td>
<td>1:C:485:ARG:HA</td>
<td>1.92</td>
<td>0.51</td>
</tr>
<tr>
<td>1:A:342:LYS:HG2</td>
<td>1:A:345:ASP:OD2</td>
<td>2.11</td>
<td>0.51</td>
</tr>
<tr>
<td>1:B:442:GLU:OE1</td>
<td>1:B:446:ARG:NE</td>
<td>2.41</td>
<td>0.51</td>
</tr>
<tr>
<td>1:H:341:PRO:HG2</td>
<td>1:H:454:THR:HG22</td>
<td>1.92</td>
<td>0.51</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:E:462:PHE:HB3</td>
<td>1:E:489:MET:HE3</td>
<td>1.93</td>
<td>0.51</td>
</tr>
<tr>
<td>1:H:305:THR:HA</td>
<td>1:H:365:MET:HG3</td>
<td>1.92</td>
<td>0.51</td>
</tr>
<tr>
<td>1:B:305:THR:HG21</td>
<td>3:B:502:QA:O2</td>
<td>2.11</td>
<td>0.50</td>
</tr>
<tr>
<td>1:G:259:LEU:HD21</td>
<td>1:G:272:LEU:HB3</td>
<td>1.94</td>
<td>0.50</td>
</tr>
<tr>
<td>1:F:142:LYS:HE3</td>
<td>1:F:143:ARG:NH2</td>
<td>2.25</td>
<td>0.50</td>
</tr>
<tr>
<td>2:D:501:HEM:HMB2</td>
<td>2:D:501:HEM:HB2</td>
<td>1.93</td>
<td>0.50</td>
</tr>
<tr>
<td>1:F:180:ASN:HD22</td>
<td>1:F:193:TYR:HE1</td>
<td>1.58</td>
<td>0.50</td>
</tr>
<tr>
<td>1:C:332:ASP:OD2</td>
<td>1:C:494:ARG:NH2</td>
<td>2.38</td>
<td>0.50</td>
</tr>
<tr>
<td>1:G:104:GLN:HE21</td>
<td>1:G:104:GLN:N</td>
<td>2.10</td>
<td>0.50</td>
</tr>
<tr>
<td>1:C:327:VAL:HG11</td>
<td>1:C:457:MET:HE3</td>
<td>1.94</td>
<td>0.50</td>
</tr>
<tr>
<td>1:F:211:PHE:CE1</td>
<td>1:F:233:PRO:HB2</td>
<td>2.47</td>
<td>0.50</td>
</tr>
<tr>
<td>1:C:59:MET:HE1</td>
<td>1:C:394:MET:HE3</td>
<td>1.90</td>
<td>0.50</td>
</tr>
<tr>
<td>1:F:211:PHE:HE11</td>
<td>1:F:233:PRO:HB2</td>
<td>1.77</td>
<td>0.50</td>
</tr>
<tr>
<td>1:G:476:LYS:CG</td>
<td>1:G:477:HIS:H</td>
<td>2.17</td>
<td>0.50</td>
</tr>
<tr>
<td>1:E:161:ARG:O</td>
<td>1:E:163:THR:N</td>
<td>2.45</td>
<td>0.49</td>
</tr>
<tr>
<td>1:E:412:ASN:OD1</td>
<td>1:E:414:GLN:HB2</td>
<td>2.11</td>
<td>0.49</td>
</tr>
<tr>
<td>1:B:452:PHE:O</td>
<td>1:B:456:ILE:HD12</td>
<td>2.12</td>
<td>0.49</td>
</tr>
<tr>
<td>1:H:187:PHE:CE1</td>
<td>1:H:251:LYS:CB</td>
<td>2.94</td>
<td>0.49</td>
</tr>
<tr>
<td>1:B:297:ASN:HD22</td>
<td>3:B:502:QA:C4</td>
<td>2.25</td>
<td>0.49</td>
</tr>
<tr>
<td>1:H:55:TYR:CE2</td>
<td>1:H:59:MET:CG</td>
<td>2.95</td>
<td>0.49</td>
</tr>
<tr>
<td>1:B:318:MET:SD</td>
<td>1:B:464:SER:HB3</td>
<td>2.52</td>
<td>0.49</td>
</tr>
<tr>
<td>1:D:161:ARG:NH2</td>
<td>1:D:459:ASN:OD1</td>
<td>2.44</td>
<td>0.49</td>
</tr>
<tr>
<td>1:E:375:ASN:O</td>
<td>1:E:387:LYS:HE2</td>
<td>2.13</td>
<td>0.49</td>
</tr>
<tr>
<td>1:B:172:PHE:O</td>
<td>1:B:176:ARG:HG3</td>
<td>2.12</td>
<td>0.49</td>
</tr>
<tr>
<td>1:C:51:THR:HG22</td>
<td>1:C:222:MET:CE</td>
<td>2.43</td>
<td>0.49</td>
</tr>
<tr>
<td>1:E:124:ALA:O</td>
<td>1:E:128:ARG:HB2</td>
<td>2.12</td>
<td>0.49</td>
</tr>
<tr>
<td>1:H:244:LEU:HB3</td>
<td>1:H:296:LEU:HD11</td>
<td>1.95</td>
<td>0.49</td>
</tr>
<tr>
<td>1:B:110:LEU:HD22</td>
<td>1:B:241:LEU:HB3</td>
<td>1.95</td>
<td>0.48</td>
</tr>
<tr>
<td>1:A:101:ARG:NH1</td>
<td>1:A:370:LEU:HB3</td>
<td>2.27</td>
<td>0.48</td>
</tr>
<tr>
<td>1:A:60:LYS:HG3</td>
<td>1:D:403:ARG:HH21</td>
<td>1.75</td>
<td>0.48</td>
</tr>
<tr>
<td>1:G:313:GLY:HA2</td>
<td>1:G:359:ILE:HD12</td>
<td>1.96</td>
<td>0.48</td>
</tr>
<tr>
<td>1:H:288:LEU:O</td>
<td>1:H:291:LEU:HB3</td>
<td>2.12</td>
<td>0.48</td>
</tr>
<tr>
<td>1:G:255:ASN:ND2</td>
<td>1:G:266:ASP:OD1</td>
<td>2.46</td>
<td>0.48</td>
</tr>
<tr>
<td>1:E:375:ASN:O</td>
<td>1:E:387:LYS:HG3</td>
<td>2.13</td>
<td>0.48</td>
</tr>
<tr>
<td>1:E:332:ASP:CG</td>
<td>1:E:494:ARG:HH22</td>
<td>2.16</td>
<td>0.48</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:C:206:LEU:O</td>
<td>1:C:210:GLN:HB2</td>
<td>2.12</td>
<td>0.48</td>
</tr>
<tr>
<td>1:C:453:PHE:O</td>
<td>1:C:457:MET:HG3</td>
<td>2.14</td>
<td>0.48</td>
</tr>
<tr>
<td>1:D:197:GLU:O</td>
<td>1:D:201:LEU:HG</td>
<td>2.14</td>
<td>0.48</td>
</tr>
<tr>
<td>1:F:381:ARG:O</td>
<td>1:F:382:ASP:CB</td>
<td>2.61</td>
<td>0.48</td>
</tr>
<tr>
<td>1:G:317:LEU:HD23</td>
<td>1:G:323:VAL:HG23</td>
<td>1.96</td>
<td>0.48</td>
</tr>
<tr>
<td>1:A:319:LYS:C</td>
<td>1:A:321:PRO:HD3</td>
<td>2.33</td>
<td>0.47</td>
</tr>
<tr>
<td>1:B:360:GLN:HG2</td>
<td>5:B:633:HOH:O</td>
<td>2.13</td>
<td>0.47</td>
</tr>
<tr>
<td>1:H:51:THR:HG23</td>
<td>1:H:218:GLN:CB</td>
<td>2.44</td>
<td>0.47</td>
</tr>
<tr>
<td>1:B:381:ARG:O</td>
<td>1:B:382:ASP:HB2</td>
<td>2.14</td>
<td>0.47</td>
</tr>
<tr>
<td>1:F:188:GLY:N</td>
<td>1:F:266:ASP:HB3</td>
<td>2.29</td>
<td>0.47</td>
</tr>
<tr>
<td>1:H:175:SER:O</td>
<td>1:H:179:SER:HB3</td>
<td>2.14</td>
<td>0.47</td>
</tr>
<tr>
<td>1:A:32:LYS:HD2</td>
<td>1:A:32:LYS:HA</td>
<td>1.52</td>
<td>0.47</td>
</tr>
<tr>
<td>1:D:101:ARG:O</td>
<td>1:D:373:ARG:HG2</td>
<td>2.15</td>
<td>0.47</td>
</tr>
<tr>
<td>1:F:398:VAL:HG12</td>
<td>1:F:428:ALA:HB1</td>
<td>1.97</td>
<td>0.47</td>
</tr>
<tr>
<td>1:H:187:PHE:CE1</td>
<td>1:H:251:LYS:HD3</td>
<td>2.50</td>
<td>0.47</td>
</tr>
<tr>
<td>1:D:315:LEU:HG</td>
<td>1:D:473:VAL:HG12</td>
<td>1.97</td>
<td>0.47</td>
</tr>
<tr>
<td>1:H:187:PHE:HE1</td>
<td>1:H:251:LYS:HB3</td>
<td>1.73</td>
<td>0.47</td>
</tr>
<tr>
<td>1:A:432:PHE:HB3</td>
<td>1:A:439:CYC:HB3</td>
<td>1.96</td>
<td>0.47</td>
</tr>
<tr>
<td>1:E:418:ASP:OD1</td>
<td>1:E:420:LYS:HB2</td>
<td>2.14</td>
<td>0.47</td>
</tr>
<tr>
<td>1:G:418:ASP:OD1</td>
<td>1:G:422:GLN:HB2</td>
<td>2.14</td>
<td>0.47</td>
</tr>
<tr>
<td>1:A:152:GLU:HG3</td>
<td>1:A:177:THR:HG23</td>
<td>1.96</td>
<td>0.47</td>
</tr>
<tr>
<td>1:D:77:ARG:HG2</td>
<td>1:D:77:ARG:NH1</td>
<td>2.18</td>
<td>0.47</td>
</tr>
<tr>
<td>1:G:104:GLN:OE1</td>
<td>1:G:118:PHE:CE1</td>
<td>2.68</td>
<td>0.47</td>
</tr>
<tr>
<td>1:A:161:ARG:HG2</td>
<td>1:A:161:ARG:NH1</td>
<td>2.30</td>
<td>0.47</td>
</tr>
<tr>
<td>1:D:467:SER:HB3</td>
<td>1:D:470:ASP:OD2</td>
<td>2.15</td>
<td>0.47</td>
</tr>
<tr>
<td>1:D:297:ASN:HA</td>
<td>3:D:502:0QA:N1</td>
<td>2.30</td>
<td>0.47</td>
</tr>
<tr>
<td>1:C:302:GLY:HA2</td>
<td>2:C:501:HEM:HM2C</td>
<td>1.97</td>
<td>0.47</td>
</tr>
<tr>
<td>1:E:348:LYS:HB2</td>
<td>1:E:348:LYS:HE2</td>
<td>1.61</td>
<td>0.47</td>
</tr>
<tr>
<td>1:E:401:ASP:OD2</td>
<td>1:E:403:ARG:HG2</td>
<td>2.15</td>
<td>0.47</td>
</tr>
<tr>
<td>1:G:111:PHE:CG</td>
<td>1:G:118:PHE:CD2</td>
<td>3.03</td>
<td>0.47</td>
</tr>
<tr>
<td>1:A:271:PHE:CE2</td>
<td>1:A:291:LEU:HB2</td>
<td>2.50</td>
<td>0.46</td>
</tr>
<tr>
<td>1:H:369:GLY:O</td>
<td>1:H:370:LEU:HD12</td>
<td>2.15</td>
<td>0.46</td>
</tr>
<tr>
<td>1:B:118:PHE:HE2</td>
<td>1:B:370:LEU:HD11</td>
<td>1.79</td>
<td>0.46</td>
</tr>
<tr>
<td>1:F:424:LYS:HE2</td>
<td>1:F:424:LYS:HB3</td>
<td>1.54</td>
<td>0.46</td>
</tr>
<tr>
<td>1:H:405:PHE:HB3</td>
<td>1:H:415:HIS:CE1</td>
<td>2.50</td>
<td>0.46</td>
</tr>
<tr>
<td>1:G:209:PHE:CE1</td>
<td>1:G:304:GLU:HG2</td>
<td>2.50</td>
<td>0.46</td>
</tr>
</tbody>
</table>
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:B:140:VAL:HA</td>
<td>1:B:145:ILE:HG21</td>
<td>1.97</td>
<td>0.46</td>
</tr>
<tr>
<td>1:F:305:THR:HA</td>
<td>1:F:365:MET:HE1</td>
<td>1.96</td>
<td>0.46</td>
</tr>
<tr>
<td>1:D:143:ARG:HG3</td>
<td>1:D:143:ARG:NH1</td>
<td>2.27</td>
<td>0.46</td>
</tr>
<tr>
<td>1:H:357:HIS:HB3</td>
<td>1:H:416:PHE:CZ</td>
<td>2.49</td>
<td>0.46</td>
</tr>
<tr>
<td>1:A:351:TYR:O</td>
<td>1:A:355:VAL:HG23</td>
<td>2.16</td>
<td>0.46</td>
</tr>
<tr>
<td>1:C:473:VAL:HG22</td>
<td>5:C:605:HOH:O</td>
<td>2.15</td>
<td>0.46</td>
</tr>
<tr>
<td>1:D:145:ILE:HA</td>
<td>1:D:145:ILE:HD12</td>
<td>1.75</td>
<td>0.46</td>
</tr>
<tr>
<td>1:F:156:LEU:HB2</td>
<td>1:F:177:THR:HG21</td>
<td>1.97</td>
<td>0.46</td>
</tr>
<tr>
<td>1:G:64:ARG:HB3</td>
<td>1:G:64:ARG:NH2</td>
<td>2.30</td>
<td>0.46</td>
</tr>
<tr>
<td>1:H:209:PHE:CZ</td>
<td>1:H:300:PHE:HD1</td>
<td>2.34</td>
<td>0.46</td>
</tr>
<tr>
<td>1:B:281:ASN:HA</td>
<td>1:B:282:PRO:HD2</td>
<td>1.79</td>
<td>0.46</td>
</tr>
<tr>
<td>1:F:37:PRO:HB2</td>
<td>1:F:48:GLN:NE2</td>
<td>2.30</td>
<td>0.46</td>
</tr>
<tr>
<td>1:F:59:MET:HE1</td>
<td>1:F:82:CYS:SG</td>
<td>2.55</td>
<td>0.46</td>
</tr>
<tr>
<td>1:G:182:ILE:HD11</td>
<td>1:G:302:GLY:CA</td>
<td>2.43</td>
<td>0.46</td>
</tr>
<tr>
<td>1:H:73:LEU:CB</td>
<td>1:H:222:MET:HG2</td>
<td>2.42</td>
<td>0.46</td>
</tr>
<tr>
<td>1:A:305:THR:HG23</td>
<td>3:A:502:0QA:H3</td>
<td>1.97</td>
<td>0.46</td>
</tr>
<tr>
<td>1:F:197:GLU:O</td>
<td>1:F:200:SER:HB3</td>
<td>2.15</td>
<td>0.46</td>
</tr>
<tr>
<td>1:D:341:PRO:CB</td>
<td>1:D:454:THR:HG21</td>
<td>2.46</td>
<td>0.46</td>
</tr>
<tr>
<td>1:E:302:GLY:HA2</td>
<td>2:E:501:HEM:CMC</td>
<td>2.45</td>
<td>0.46</td>
</tr>
<tr>
<td>1:G:111:PHE:CD2</td>
<td>1:G:118:PHE:HD2</td>
<td>2.33</td>
<td>0.46</td>
</tr>
<tr>
<td>1:C:343:PHE:O</td>
<td>1:C:346:ARG:HB2</td>
<td>2.16</td>
<td>0.46</td>
</tr>
<tr>
<td>1:F:305:THR:HG22</td>
<td>1:F:365:MET:HE2</td>
<td>1.98</td>
<td>0.46</td>
</tr>
<tr>
<td>1:H:430:VAL:N</td>
<td>1:H:431:PRO:HD3</td>
<td>2.31</td>
<td>0.46</td>
</tr>
<tr>
<td>1:F:331:ILE:HG23</td>
<td>1:F:335:ILE:HD12</td>
<td>1.97</td>
<td>0.45</td>
</tr>
<tr>
<td>1:H:175:SER:O</td>
<td>1:H:179:SER:CB</td>
<td>2.64</td>
<td>0.45</td>
</tr>
<tr>
<td>1:H:423:PHE:CE1</td>
<td>1:H:425:LYS:HG3</td>
<td>2.52</td>
<td>0.45</td>
</tr>
<tr>
<td>1:B:330:GLU:HG2</td>
<td>1:B:333:ARG:NH2</td>
<td>2.31</td>
<td>0.45</td>
</tr>
<tr>
<td>1:D:476:LYS:HB2</td>
<td>1:D:485:ARG:HA</td>
<td>1.98</td>
<td>0.45</td>
</tr>
<tr>
<td>1:G:103:GLU:C</td>
<td>1:G:104:GLN:HE21</td>
<td>2.19</td>
<td>0.45</td>
</tr>
<tr>
<td>1:B:341:PRO:HG2</td>
<td>1:B:454:THR:HG22</td>
<td>1.98</td>
<td>0.45</td>
</tr>
<tr>
<td>1:G:64:ARG:O</td>
<td>1:G:64:ARG:CE1</td>
<td>2.46</td>
<td>0.45</td>
</tr>
<tr>
<td>1:E:326:LYS:HD2</td>
<td>1:E:351:TYR:CE</td>
<td>2.52</td>
<td>0.45</td>
</tr>
<tr>
<td>1:E:454:THR:HG22</td>
<td>1:E:455:THR:N</td>
<td>2.32</td>
<td>0.45</td>
</tr>
<tr>
<td>1:E:59:MET:O</td>
<td>1:E:62:SER:HB3</td>
<td>2.17</td>
<td>0.45</td>
</tr>
<tr>
<td>1:B:433:SER:HB3</td>
<td>2:B:501:HEM:HB1</td>
<td>1.99</td>
<td>0.45</td>
</tr>
<tr>
<td>1:C:409:ARG:HB3</td>
<td>1:C:409:ARG:CE1</td>
<td>1.68</td>
<td>0.45</td>
</tr>
<tr>
<td>2:F:501:HEM:NA</td>
<td>3:F:502:0QA:H2</td>
<td>2.32</td>
<td>0.45</td>
</tr>
<tr>
<td>1:G:111:PHE:CE1</td>
<td>1:G:118:PHE:HD2</td>
<td>2.35</td>
<td>0.45</td>
</tr>
<tr>
<td>1:D:32:LYS:HA</td>
<td>1:D:32:LYS:HD2</td>
<td>1.85</td>
<td>0.45</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:F:442:GLU:O</td>
<td>1:F:446:ARG:HG3</td>
<td>2.17</td>
<td>0.45</td>
</tr>
<tr>
<td>1:C:409:ARG:HG2</td>
<td>5:C:630:HOH:O</td>
<td>2.15</td>
<td>0.45</td>
</tr>
<tr>
<td>1:E:168:ILE:HD11</td>
<td>1:E:491:PHE:CD1</td>
<td>2.52</td>
<td>0.45</td>
</tr>
<tr>
<td>1:G:51:THR:HG23</td>
<td>1:G:218:GLN:HB2</td>
<td>1.99</td>
<td>0.45</td>
</tr>
<tr>
<td>1:G:271:PHE:CE1</td>
<td>1:G:291:LEU:HB2</td>
<td>2.51</td>
<td>0.45</td>
</tr>
<tr>
<td>1:A:368:MET:O</td>
<td>1:A:369:GLY:C</td>
<td>2.55</td>
<td>0.45</td>
</tr>
<tr>
<td>1:B:342:LYS:HE2</td>
<td>1:B:344:GLU:OE1</td>
<td>2.16</td>
<td>0.45</td>
</tr>
<tr>
<td>1:E:252:VAL:O</td>
<td>1:E:256:GLN:HG3</td>
<td>2.17</td>
<td>0.45</td>
</tr>
<tr>
<td>1:H:461:ARG:NH1</td>
<td>1:H:493:PRO:O</td>
<td>2.47</td>
<td>0.45</td>
</tr>
<tr>
<td>1:H:423:PHE:C</td>
<td>1:H:423:PHE:CD1</td>
<td>2.90</td>
<td>0.45</td>
</tr>
<tr>
<td>1:G:370:LEU:HD12</td>
<td>1:G:370:LEU:HA</td>
<td>1.81</td>
<td>0.44</td>
</tr>
<tr>
<td>1:B:53:GLN:HG2</td>
<td>1:B:56:ASN:OD1</td>
<td>2.16</td>
<td>0.44</td>
</tr>
<tr>
<td>1:D:271:PHE:CD2</td>
<td>1:D:291:LEU:HB2</td>
<td>2.51</td>
<td>0.44</td>
</tr>
<tr>
<td>1:D:335:ILE:HD13</td>
<td>1:D:341:PRO:HB3</td>
<td>1.99</td>
<td>0.44</td>
</tr>
<tr>
<td>1:F:172:PHE:HA</td>
<td>1:F:175:SER:OG</td>
<td>2.16</td>
<td>0.44</td>
</tr>
<tr>
<td>1:A:142:LYS:HG3</td>
<td>1:A:143:ARG:H</td>
<td>1.79</td>
<td>0.44</td>
</tr>
<tr>
<td>1:B:260:ASP:HA</td>
<td>1:B:261:PRO:HD2</td>
<td>1.81</td>
<td>0.44</td>
</tr>
<tr>
<td>1:D:139:GLY:O</td>
<td>1:D:145:ILE:HB</td>
<td>2.18</td>
<td>0.44</td>
</tr>
<tr>
<td>1:G:310:LEU:HD23</td>
<td>1:G:453:PHE:CE2</td>
<td>2.53</td>
<td>0.44</td>
</tr>
<tr>
<td>1:H:89:GLU:O</td>
<td>1:H:93:ASP:HB2</td>
<td>2.17</td>
<td>0.44</td>
</tr>
<tr>
<td>1:E:202:LEU:HA</td>
<td>1:E:205:MET:HE2</td>
<td>1.98</td>
<td>0.44</td>
</tr>
<tr>
<td>1:G:478:VAL:O</td>
<td>1:G:478:VAL:CG1</td>
<td>2.65</td>
<td>0.44</td>
</tr>
<tr>
<td>1:H:487:TYR:C</td>
<td>1:H:487:TYR:CD1</td>
<td>2.91</td>
<td>0.44</td>
</tr>
<tr>
<td>1:C:367:PRO:HD2</td>
<td>1:C:480:PHE:O</td>
<td>2.18</td>
<td>0.44</td>
</tr>
<tr>
<td>1:F:186:VAL:HA</td>
<td>1:F:267:PHE:CB</td>
<td>2.48</td>
<td>0.44</td>
</tr>
<tr>
<td>1:C:271:PHE:CG</td>
<td>1:C:291:LEU:HD13</td>
<td>2.52</td>
<td>0.44</td>
</tr>
<tr>
<td>1:C:312:TYR:O</td>
<td>1:C:316:LEU:HD22</td>
<td>2.18</td>
<td>0.44</td>
</tr>
<tr>
<td>1:G:380:PHE:O</td>
<td>1:G:381:ARG:C</td>
<td>2.56</td>
<td>0.44</td>
</tr>
<tr>
<td>1:G:85:ASP:HB3</td>
<td>1:G:85:ASP:HB3</td>
<td>1.83</td>
<td>0.44</td>
</tr>
<tr>
<td>1:F:232:GLY:O</td>
<td>1:F:234:GLN:N</td>
<td>2.51</td>
<td>0.44</td>
</tr>
<tr>
<td>1:G:191:PHE:CD2</td>
<td>1:G:198:PHE:CD1</td>
<td>3.06</td>
<td>0.44</td>
</tr>
<tr>
<td>1:G:271:PHE:CD1</td>
<td>1:G:291:LEU:HB2</td>
<td>2.52</td>
<td>0.44</td>
</tr>
<tr>
<td>1:G:365:MET:CA</td>
<td>1:G:365:MET:HE2</td>
<td>2.45</td>
<td>0.44</td>
</tr>
<tr>
<td>1:B:103:GLU:HB2</td>
<td>1:B:108:ASP:OD2</td>
<td>2.18</td>
<td>0.44</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:F:197:GLU:OE1</td>
<td>1:F:247:PHE:CE1</td>
<td>2.71</td>
<td>0.44</td>
</tr>
<tr>
<td>1:E:101:ARG:NH2</td>
<td>1:E:370:LEU:HD23</td>
<td>2.33</td>
<td>0.43</td>
</tr>
<tr>
<td>1:H:128:ARG:NH2</td>
<td>1:H:438:TYR:CD2</td>
<td>2.85</td>
<td>0.43</td>
</tr>
<tr>
<td>1:H:441:GLY:HA3</td>
<td>2:H:501:HEM:CAC</td>
<td>2.48</td>
<td>0.43</td>
</tr>
<tr>
<td>1:B:192:ASP:C</td>
<td>1:B:194:GLU:H</td>
<td>2.20</td>
<td>0.43</td>
</tr>
<tr>
<td>1:E:291:LEU:O</td>
<td>1:E:291:LEU:HD12</td>
<td>2.18</td>
<td>0.43</td>
</tr>
<tr>
<td>1:A:476:LYS:HB2</td>
<td>1:A:485:ARG:HA</td>
<td>2.01</td>
<td>0.43</td>
</tr>
<tr>
<td>1:E:451:LEU:HD23</td>
<td>1:E:451:LEU:HA</td>
<td>1.86</td>
<td>0.43</td>
</tr>
<tr>
<td>1:C:444:LEU:O</td>
<td>1:C:448:GLU:HG3</td>
<td>2.19</td>
<td>0.43</td>
</tr>
<tr>
<td>1:A:343:PHE:CE1</td>
<td>1:A:447:MET:HA</td>
<td>2.53</td>
<td>0.43</td>
</tr>
<tr>
<td>1:E:115:GLY:O</td>
<td>1:E:119:SER:HB3</td>
<td>2.19</td>
<td>0.43</td>
</tr>
<tr>
<td>1:G:449:LEU:O</td>
<td>1:G:453:PHE:HB2</td>
<td>2.17</td>
<td>0.43</td>
</tr>
<tr>
<td>1:H:116:VAL:CG1</td>
<td>1:H:294:THR:HG23</td>
<td>2.47</td>
<td>0.43</td>
</tr>
<tr>
<td>1:H:116:VAL:HG12</td>
<td>1:H:294:THR:HG23</td>
<td>2.01</td>
<td>0.43</td>
</tr>
<tr>
<td>1:B:202:LEU:HD23</td>
<td>1:B:205:MET:CE</td>
<td>2.48</td>
<td>0.43</td>
</tr>
<tr>
<td>1:E:351:TYR:O</td>
<td>1:E:355:VAL:HG23</td>
<td>2.18</td>
<td>0.43</td>
</tr>
<tr>
<td>1:H:161:ARG:HH2</td>
<td>1:H:459:ASN:HD22</td>
<td>1.65</td>
<td>0.43</td>
</tr>
<tr>
<td>1:H:64:ARG:HB2</td>
<td>1:H:64:ARG:HE</td>
<td>1.70</td>
<td>0.43</td>
</tr>
<tr>
<td>1:C:154:GLY:HA3</td>
<td>5:C:650:HOH:O</td>
<td>2.18</td>
<td>0.43</td>
</tr>
<tr>
<td>1:D:453:PHE:O</td>
<td>1:D:457:MET:HB2</td>
<td>2.19</td>
<td>0.43</td>
</tr>
<tr>
<td>1:H:55:TYR:CE2</td>
<td>1:H:59:MET:HG3</td>
<td>2.53</td>
<td>0.43</td>
</tr>
<tr>
<td>1:C:432:PHE:HB3</td>
<td>1:C:439:CYS:HB3</td>
<td>2.00</td>
<td>0.43</td>
</tr>
<tr>
<td>1:E:407:ASN:HB3</td>
<td>1:E:410:ASP:HB2</td>
<td>2.01</td>
<td>0.43</td>
</tr>
<tr>
<td>1:F:175:SER:HB2</td>
<td>1:F:202:LEU:HD22</td>
<td>2.01</td>
<td>0.43</td>
</tr>
<tr>
<td>1:H:440:PHE:CD1</td>
<td>1:H:440:PHE:C</td>
<td>2.92</td>
<td>0.43</td>
</tr>
<tr>
<td>1:C:51:THR:HG22</td>
<td>1:C:222:MET:HE3</td>
<td>2.00</td>
<td>0.42</td>
</tr>
<tr>
<td>1:C:260:ASP:HA</td>
<td>1:C:261:PRO:HD2</td>
<td>1.92</td>
<td>0.42</td>
</tr>
<tr>
<td>1:G:296:LEU:HD12</td>
<td>1:G:296:LEU:HA</td>
<td>1.81</td>
<td>0.42</td>
</tr>
<tr>
<td>1:B:145:ILE:HA</td>
<td>1:B:145:ILE:HD12</td>
<td>1.72</td>
<td>0.42</td>
</tr>
<tr>
<td>1:B:186:VAL:HG23</td>
<td>1:B:187:PHE:CD1</td>
<td>2.54</td>
<td>0.42</td>
</tr>
<tr>
<td>1:C:357:HIS:NE2</td>
<td>1:C:446:ARG:NH2</td>
<td>2.67</td>
<td>0.42</td>
</tr>
<tr>
<td>1:D:471:ILE:HG22</td>
<td>1:D:473:VAL:HG13</td>
<td>2.01</td>
<td>0.42</td>
</tr>
<tr>
<td>1:B:59:MET:CE</td>
<td>1:B:59:MET:HA</td>
<td>2.50</td>
<td>0.42</td>
</tr>
<tr>
<td>1:D:325:ALA:O</td>
<td>1:D:328:HIS:HB2</td>
<td>2.19</td>
<td>0.42</td>
</tr>
<tr>
<td>1:D:492:LEU:HA</td>
<td>1:D:493:PRO:HD3</td>
<td>1.81</td>
<td>0.42</td>
</tr>
<tr>
<td>1:E:317:LEU:HD13</td>
<td>1:E:457:MET:CE</td>
<td>2.49</td>
<td>0.42</td>
</tr>
<tr>
<td>1:E:467:SER:O</td>
<td>1:E:470:ASP:HB2</td>
<td>2.20</td>
<td>0.42</td>
</tr>
<tr>
<td>1:G:53:GLN:HB3</td>
<td>1:G:56:ASN:HB2</td>
<td>2.01</td>
<td>0.42</td>
</tr>
</tbody>
</table>
| 1:F:59:MET:CE | 1:F:82:CYS:SG | 3.08 | 0.42

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:G:305:THR:HG22</td>
<td>1:G:365:MET:HG3</td>
<td>2.00</td>
<td>0.42</td>
</tr>
<tr>
<td>1:H:394:MET:O</td>
<td>1:H:395:LEU:C</td>
<td>2.57</td>
<td>0.42</td>
</tr>
<tr>
<td>1:B:319:LYS:HD2</td>
<td>1:B:468:PRO:O</td>
<td>2.19</td>
<td>0.42</td>
</tr>
<tr>
<td>1:B:476:LYS:HB2</td>
<td>1:B:485:ARG:HA</td>
<td>2.01</td>
<td>0.42</td>
</tr>
<tr>
<td>1:A:436:LYS:HE2</td>
<td>1:C:262:ASN:OD1</td>
<td>2.19</td>
<td>0.42</td>
</tr>
<tr>
<td>1:C:381:ARG:O</td>
<td>1:C:382:ASP:HB2</td>
<td>2.20</td>
<td>0.42</td>
</tr>
<tr>
<td>1:D:216:THR:HG21</td>
<td>1:D:233:PRO:HG2</td>
<td>2.01</td>
<td>0.42</td>
</tr>
<tr>
<td>1:F:344:GLU:C</td>
<td>1:F:346:ARG:H</td>
<td>2.22</td>
<td>0.42</td>
</tr>
<tr>
<td>1:G:411:PHE:CD2</td>
<td>1:G:411:PHE:CD2</td>
<td>2.72</td>
<td>0.42</td>
</tr>
<tr>
<td>1:G:89:GLU:O</td>
<td>1:G:93:ASP:HB2</td>
<td>2.19</td>
<td>0.42</td>
</tr>
<tr>
<td>1:H:153:ALA:HA</td>
<td>1:H:156:LEU:HB3</td>
<td>2.02</td>
<td>0.42</td>
</tr>
<tr>
<td>1:D:341:PRO:CB</td>
<td>1:D:454:THR:CG2</td>
<td>2.98</td>
<td>0.42</td>
</tr>
<tr>
<td>1:F:300:PHE:CD2</td>
<td>3:F:502:0QA:C2</td>
<td>3.02</td>
<td>0.42</td>
</tr>
<tr>
<td>1:B:429:PHE:CZ</td>
<td>1:B:431:PRO:HG3</td>
<td>2.55</td>
<td>0.42</td>
</tr>
<tr>
<td>1:G:323:VAL:HG21</td>
<td>1:G:411:PHE:HE2</td>
<td>1.84</td>
<td>0.42</td>
</tr>
<tr>
<td>1:G:487:TYR:CD1</td>
<td>1:G:487:TYR:C</td>
<td>2.93</td>
<td>0.42</td>
</tr>
<tr>
<td>1:A:77:ARG:NH1</td>
<td>1:A:77:ARG:CG</td>
<td>2.73</td>
<td>0.42</td>
</tr>
<tr>
<td>1:B:363:GLY:O</td>
<td>1:B:364:ASP:C</td>
<td>2.58</td>
<td>0.42</td>
</tr>
<tr>
<td>1:B:71:ILE:HA</td>
<td>1:B:71:ILE:HD12</td>
<td>1.92</td>
<td>0.42</td>
</tr>
<tr>
<td>1:E:310:LEU:HD23</td>
<td>1:E:453:PHE:CE1</td>
<td>2.55</td>
<td>0.42</td>
</tr>
<tr>
<td>3:E:502:0QA:H6</td>
<td>3:E:502:0QA:H2</td>
<td>1.63</td>
<td>0.42</td>
</tr>
<tr>
<td>1:G:59:MET:O</td>
<td>1:G:62:SER:HB3</td>
<td>2.20</td>
<td>0.42</td>
</tr>
<tr>
<td>1:E:96:GLU:O</td>
<td>1:E:375:ASN:ND2</td>
<td>2.52</td>
<td>0.42</td>
</tr>
<tr>
<td>1:G:343:PHE:CE2</td>
<td>1:G:346:ARG:NH2</td>
<td>2.88</td>
<td>0.42</td>
</tr>
<tr>
<td>1:F:281:ASN:OD1</td>
<td>1:F:282:PRO:HD2</td>
<td>2.20</td>
<td>0.42</td>
</tr>
<tr>
<td>1:G:302:GLY:HA2</td>
<td>2:G:501:HEM:CMC</td>
<td>2.50</td>
<td>0.42</td>
</tr>
<tr>
<td>1:D:59:MET:HA</td>
<td>1:D:59:MET:CE</td>
<td>2.50</td>
<td>0.41</td>
</tr>
<tr>
<td>1:G:288:LEU:O</td>
<td>1:G:291:LEU:HB3</td>
<td>2.20</td>
<td>0.41</td>
</tr>
<tr>
<td>1:H:73:LEU:HB3</td>
<td>1:H:222:MET:CG</td>
<td>2.44</td>
<td>0.41</td>
</tr>
<tr>
<td>1:E:271:PHE:O</td>
<td>1:E:275:MET:HG3</td>
<td>2.21</td>
<td>0.41</td>
</tr>
<tr>
<td>1:H:71:ILE:HG13</td>
<td>1:H:72:HIS:N</td>
<td>2.35</td>
<td>0.41</td>
</tr>
<tr>
<td>1:C:167:ASN:ND2</td>
<td>1:C:488:THR:OG1</td>
<td>2.45</td>
<td>0.41</td>
</tr>
<tr>
<td>1:E:146:GLU:O</td>
<td>1:E:150:GLN:HG3</td>
<td>2.19</td>
<td>0.41</td>
</tr>
<tr>
<td>2:F:501:HEM:C1A</td>
<td>3:F:502:0QA:H2</td>
<td>2.55</td>
<td>0.41</td>
</tr>
<tr>
<td>1:G:477:HIS:HB2</td>
<td>1:G:483:ILE:HD12</td>
<td>2.02</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:153:ALA:O</td>
<td>1:B:157:ILE:HG12</td>
<td>2.21</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:424:LYS:HB3</td>
<td>1:B:424:LYS:HE3</td>
<td>1.90</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:75:PRO:HA</td>
<td>5:B:603:HOH:O</td>
<td>2.20</td>
<td>0.41</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:E:143:ARG:O</td>
<td>1:E:147:GLU:HG2</td>
<td>2.20</td>
<td>0.41</td>
</tr>
<tr>
<td>1:E:186:VAL:HA</td>
<td>1:E:267:PHE:HB3</td>
<td>2.03</td>
<td>0.41</td>
</tr>
<tr>
<td>1:F:143:ARG:H</td>
<td>1:F:143:ARG:NE</td>
<td>2.18</td>
<td>0.41</td>
</tr>
<tr>
<td>1:H:299:PHE:O</td>
<td>1:H:303:THR:HB</td>
<td>2.20</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:453:PHE:CD2</td>
<td>1:A:457:MET:CE</td>
<td>3.03</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:341:PRO:CG</td>
<td>1:B:454:THR:HG22</td>
<td>2.50</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:483:ILE:HA</td>
<td>1:B:484:PRO:HD2</td>
<td>1.90</td>
<td>0.41</td>
</tr>
<tr>
<td>1:C:101:ARG:NH1</td>
<td>2:C:501:HEM:O2A</td>
<td>2.48</td>
<td>0.41</td>
</tr>
<tr>
<td>1:C:331:ILE:CD1</td>
<td>1:C:457:MET:HB2</td>
<td>2.50</td>
<td>0.41</td>
</tr>
<tr>
<td>1:D:291:LEU:O</td>
<td>1:D:291:LEU:HD12</td>
<td>2.20</td>
<td>0.41</td>
</tr>
<tr>
<td>1:E:429:PHE:CZ</td>
<td>1:E:431:PRO:HG3</td>
<td>2.56</td>
<td>0.41</td>
</tr>
<tr>
<td>1:E:55:TYR:CD2</td>
<td>1:E:55:TYR:C</td>
<td>2.93</td>
<td>0.41</td>
</tr>
<tr>
<td>1:F:420:LYS:HE2</td>
<td>1:F:422:GLN:NE2</td>
<td>2.34</td>
<td>0.41</td>
</tr>
<tr>
<td>1:H:116:VAL:HB</td>
<td>1:H:294:THR:HG23</td>
<td>2.03</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:302:GLY:HA2</td>
<td>2:A:501:HEM:HMC2</td>
<td>2.02</td>
<td>0.41</td>
</tr>
<tr>
<td>1:C:436:LYS:NZ</td>
<td>5:C:631:HOH:O</td>
<td>2.52</td>
<td>0.41</td>
</tr>
<tr>
<td>1:D:101:ARG:HD3</td>
<td>1:D:371:ALA:O</td>
<td>2.20</td>
<td>0.41</td>
</tr>
<tr>
<td>1:H:146:GLU:C</td>
<td>1:H:148:ARG:N</td>
<td>2.73</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:492:LEU:HA</td>
<td>1:B:493:PRO:HD3</td>
<td>1.92</td>
<td>0.41</td>
</tr>
<tr>
<td>1:G:250:LYS:CE</td>
<td>5:G:605:HOH:O</td>
<td>2.69</td>
<td>0.41</td>
</tr>
<tr>
<td>1:D:461:ARG:HB3</td>
<td>1:D:494:ARG:HD2</td>
<td>2.03</td>
<td>0.41</td>
</tr>
<tr>
<td>3:D:502:0QA:H10</td>
<td>3:D:502:0QA:H8</td>
<td>1.78</td>
<td>0.41</td>
</tr>
<tr>
<td>1:E:323:VAL:O</td>
<td>1:E:327:VAL:HG23</td>
<td>2.21</td>
<td>0.41</td>
</tr>
<tr>
<td>1:E:430:VAL:N</td>
<td>1:E:431:PRO:CD</td>
<td>2.83</td>
<td>0.41</td>
</tr>
<tr>
<td>1:F:335:ILE:HA</td>
<td>1:F:339:ARG:NH2</td>
<td>2.36</td>
<td>0.41</td>
</tr>
<tr>
<td>1:H:178:VAL:CG1</td>
<td>1:H:306:VAL:HB</td>
<td>2.47</td>
<td>0.41</td>
</tr>
<tr>
<td>1:H:169:ASP:HA</td>
<td>1:H:170:PRO:HD3</td>
<td>1.89</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:354:ALA:HB2</td>
<td>1:A:417:LEU:HD13</td>
<td>2.03</td>
<td>0.41</td>
</tr>
<tr>
<td>1:G:343:SER:CB</td>
<td>2:G:501:HEM:HBA1</td>
<td>2.51</td>
<td>0.40</td>
</tr>
<tr>
<td>1:H:110:LEU:HD22</td>
<td>1:H:241:LEU:HB3</td>
<td>2.03</td>
<td>0.40</td>
</tr>
<tr>
<td>1:B:156:LEU:O</td>
<td>1:B:160:LEU:HG</td>
<td>2.21</td>
<td>0.40</td>
</tr>
<tr>
<td>3:B:502:0QA:H1</td>
<td>3:B:502:0QA:H6</td>
<td>1.62</td>
<td>0.40</td>
</tr>
<tr>
<td>1:D:260:ASP:HA</td>
<td>1:D:261:PRO:HD3</td>
<td>1.87</td>
<td>0.40</td>
</tr>
<tr>
<td>1:D:341:PRO:CG</td>
<td>1:D:454:THR:CG2</td>
<td>2.96</td>
<td>0.40</td>
</tr>
<tr>
<td>1:F:444:LEU:O</td>
<td>1:F:448:GLU:HG3</td>
<td>2.21</td>
<td>0.40</td>
</tr>
<tr>
<td>1:G:352:THR:O</td>
<td>1:G:353:GLU:C</td>
<td>2.58</td>
<td>0.40</td>
</tr>
<tr>
<td>1:G:372:HIS:NE2</td>
<td>2:G:501:HEM:O1A</td>
<td>2.49</td>
<td>0.40</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:E:123:ARG:HA</td>
<td>1:E:285:GLU:HG3</td>
<td>2.03</td>
<td>0.40</td>
</tr>
<tr>
<td>1:F:53:GLN:CG</td>
<td>1:F:56:ASN:OD1</td>
<td>2.69</td>
<td>0.40</td>
</tr>
<tr>
<td>1:G:115:GLY:O</td>
<td>1:G:119:SER:HB3</td>
<td>2.21</td>
<td>0.40</td>
</tr>
<tr>
<td>1:G:200:SER:O</td>
<td>1:G:203:ARG:HB3</td>
<td>2.20</td>
<td>0.40</td>
</tr>
<tr>
<td>1:D:450:PHE:O</td>
<td>1:D:454:THR:HB</td>
<td>2.21</td>
<td>0.40</td>
</tr>
<tr>
<td>1:E:458:GLN:OE1</td>
<td>1:E:459:ASN:ND2</td>
<td>2.54</td>
<td>0.40</td>
</tr>
</tbody>
</table>

There are no symmetry-related clashes.

5.3 Torsion angles

5.3.1 Protein backbone

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Analysed</th>
<th>Favoured</th>
<th>Allowed</th>
<th>Outliers</th>
<th>Percentiles</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>464/476 (98%)</td>
<td>439 (95%)</td>
<td>24 (5%)</td>
<td>1 (0%)</td>
<td>51</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>463/476 (97%)</td>
<td>445 (96%)</td>
<td>18 (4%)</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>464/476 (98%)</td>
<td>443 (96%)</td>
<td>20 (4%)</td>
<td>1 (0%)</td>
<td>51</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>463/476 (97%)</td>
<td>444 (96%)</td>
<td>18 (4%)</td>
<td>1 (0%)</td>
<td>51</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>463/476 (97%)</td>
<td>434 (94%)</td>
<td>28 (6%)</td>
<td>1 (0%)</td>
<td>51</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>463/476 (97%)</td>
<td>413 (89%)</td>
<td>44 (10%)</td>
<td>6 (1%)</td>
<td>14</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>461/476 (97%)</td>
<td>417 (90%)</td>
<td>36 (8%)</td>
<td>8 (2%)</td>
<td>11</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>456/476 (96%)</td>
<td>396 (87%)</td>
<td>53 (12%)</td>
<td>7 (2%)</td>
<td>12</td>
</tr>
<tr>
<td>All</td>
<td>All</td>
<td>3697/3808 (97%)</td>
<td>3431 (93%)</td>
<td>241 (6%)</td>
<td>25 (1%)</td>
<td>25</td>
</tr>
</tbody>
</table>

All (25) Ramachandran outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C</td>
<td>346</td>
<td>ARG</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>G</td>
<td>364</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>468</td>
<td>PRO</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>369</td>
<td>GLY</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>162</td>
<td>GLY</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>338</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>137</td>
<td>GLY</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>225</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>337</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>85</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>419</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>345</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>381</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>147</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>193</td>
<td>TYR</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>42</td>
<td>PHE</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>212</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>382</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>171</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>322</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>162</td>
<td>GLY</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>193</td>
<td>TYR</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>421</td>
<td>GLY</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>233</td>
<td>PRO</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>478</td>
<td>VAL</td>
</tr>
</tbody>
</table>

5.3.2 Protein sidechains

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Analysed</th>
<th>Rotameric</th>
<th>Outliers</th>
<th>Percentiles</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>410/419 (98%)</td>
<td>391 (95%)</td>
<td>19 (5%)</td>
<td>31 39</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>409/419 (98%)</td>
<td>392 (96%)</td>
<td>17 (4%)</td>
<td>34 43</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>410/419 (98%)</td>
<td>394 (96%)</td>
<td>16 (4%)</td>
<td>37 47</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>409/419 (98%)</td>
<td>388 (95%)</td>
<td>21 (5%)</td>
<td>28 33</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>409/419 (98%)</td>
<td>380 (93%)</td>
<td>29 (7%)</td>
<td>17 18</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Analysed</th>
<th>Rotameric</th>
<th>Outliers</th>
<th>Percentiles</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>F</td>
<td>409/419 (98%)</td>
<td>383 (94%)</td>
<td>26 (6%)</td>
<td>20 22</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>403/419 (96%)</td>
<td>375 (93%)</td>
<td>28 (7%)</td>
<td>18 19</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>403/419 (96%)</td>
<td>354 (88%)</td>
<td>49 (12%)</td>
<td>6 5</td>
</tr>
<tr>
<td>All</td>
<td>All</td>
<td>3262/3352 (97%)</td>
<td>3057 (94%)</td>
<td>205 (6%)</td>
<td>21 23</td>
</tr>
</tbody>
</table>

All (205) residues with a non-rotameric sidechain are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>32</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>40</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>62</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>64[A]</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>64[B]</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>77</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>96</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>135</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>167</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>189</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>250</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>263</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>300</td>
<td>PHE</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>312</td>
<td>TYR</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>337</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>346</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>370</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>417</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>419</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>32</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>40</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>77</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>97</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>101</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>135</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>143</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>192</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>280</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>300</td>
<td>PHE</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>312</td>
<td>TYR</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>365</td>
<td>MET</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>417</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>420</td>
<td>LYS</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>B</td>
<td>457</td>
<td>MET</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>469</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>471</td>
<td>ILE</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>32</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>40</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>145</td>
<td>ILE</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>194</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>206</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>276</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>300</td>
<td>PHE</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>312</td>
<td>TYR</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>316</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>337</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>344</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>409</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>413</td>
<td>PRO</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>417</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>457</td>
<td>MET</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>32</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>40</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>53</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>77</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>128</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>135</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>142</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>145</td>
<td>ILE</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>147</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>194</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>236</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>300</td>
<td>PHE</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>312</td>
<td>TYR</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>316</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>344</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>346</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>375</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>376</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>454</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>457</td>
<td>MET</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>463</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>40</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>73</td>
<td>LEU</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>E</td>
<td>126</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>128</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>135</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>143</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>167</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>189</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>194</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>197</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>254</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>291</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>307</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>312</td>
<td>TYR</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>316</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>329</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>346</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>373</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>376</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>382</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>409</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>417</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>424</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>433</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>446</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>454</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>457</td>
<td>MET</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>467</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>490</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>53</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>91</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>135</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>143</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>167</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>184</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>196</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>228</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>250</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>257</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>262</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>270</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>283</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>289</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>307</td>
<td>SER</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>F</td>
<td>312</td>
<td>TYR</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>342</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>348</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>366</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>370</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>409</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>417</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>454</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>457</td>
<td>MET</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>458</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>490</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>40</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>51</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>52</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>53</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>85</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>104</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>125</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>129</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>167</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>184</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>201</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>219</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>241</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>253</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>259</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>266</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>274</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>289</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>291</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>312</td>
<td>TYR</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>319</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>326</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>329</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>342</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>436</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>463</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>470</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>485</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>32</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>33</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>57</td>
<td>SER</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>H</td>
<td>64</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>85</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>88</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>126</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>129</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>135</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>136</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>148</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>151</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>183</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>195</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>205</td>
<td>MET</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>225</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>242</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>246</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>253</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>254</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>270</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>272</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>297</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>312</td>
<td>TYR</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>319</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>326</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>329</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>332</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>334</td>
<td>VAL</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>335</td>
<td>ILE</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>338</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>349</td>
<td>MET</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>365</td>
<td>MET</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>376</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>387</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>419</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>420</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>423</td>
<td>PHE</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>434</td>
<td>ILE</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>436</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>438</td>
<td>TYR</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>442</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>467</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>470</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>472</td>
<td>ASP</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>H</td>
<td>473</td>
<td>VAL</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>478</td>
<td>VAL</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>482</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>487</td>
<td>TYR</td>
</tr>
</tbody>
</table>

Some sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (8) such sidechains are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C</td>
<td>167</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>236</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>210</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>283</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>422</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>104</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>126</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>255</td>
<td>ASN</td>
</tr>
</tbody>
</table>

5.3.3 RNA

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates

There are no carbohydrates in this entry.

5.6 Ligand geometry

16 ligands are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the chemical component dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with $|Z| > 2$ is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).
In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the chemical component dictionary. Similar counts are reported in the Torsion and Rings columns. ‘-’ means no outliers of that kind were identified.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Type</th>
<th>Chain</th>
<th>Res</th>
<th>Link</th>
<th>Chirals</th>
<th>Torsions</th>
<th>Rings</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>HEM</td>
<td>A</td>
<td>501</td>
<td>1,3</td>
<td>-</td>
<td>0/6/54/54</td>
<td>0/0/8/8</td>
</tr>
<tr>
<td>3</td>
<td>0QA</td>
<td>A</td>
<td>502</td>
<td>2</td>
<td>-</td>
<td>0/12/12/12</td>
<td>0/1/1/1</td>
</tr>
<tr>
<td>2</td>
<td>HEM</td>
<td>B</td>
<td>501</td>
<td>1</td>
<td>-</td>
<td>0/6/54/54</td>
<td>0/0/8/8</td>
</tr>
<tr>
<td>3</td>
<td>0QA</td>
<td>B</td>
<td>502</td>
<td>-</td>
<td>-</td>
<td>0/12/12/12</td>
<td>0/1/1/1</td>
</tr>
<tr>
<td>2</td>
<td>HEM</td>
<td>C</td>
<td>501</td>
<td>1,3</td>
<td>-</td>
<td>0/6/54/54</td>
<td>0/0/8/8</td>
</tr>
<tr>
<td>3</td>
<td>0QA</td>
<td>C</td>
<td>502</td>
<td>2</td>
<td>-</td>
<td>0/12/12/12</td>
<td>0/1/1/1</td>
</tr>
<tr>
<td>2</td>
<td>HEM</td>
<td>D</td>
<td>501</td>
<td>1</td>
<td>-</td>
<td>0/6/54/54</td>
<td>0/0/8/8</td>
</tr>
<tr>
<td>3</td>
<td>0QA</td>
<td>D</td>
<td>502</td>
<td>-</td>
<td>-</td>
<td>0/12/12/12</td>
<td>0/1/1/1</td>
</tr>
<tr>
<td>2</td>
<td>HEM</td>
<td>E</td>
<td>501</td>
<td>1,3</td>
<td>-</td>
<td>0/6/54/54</td>
<td>0/0/8/8</td>
</tr>
<tr>
<td>3</td>
<td>0QA</td>
<td>E</td>
<td>502</td>
<td>2</td>
<td>-</td>
<td>0/12/12/12</td>
<td>0/1/1/1</td>
</tr>
<tr>
<td>2</td>
<td>HEM</td>
<td>F</td>
<td>501</td>
<td>1,3</td>
<td>-</td>
<td>0/6/54/54</td>
<td>0/0/8/8</td>
</tr>
<tr>
<td>3</td>
<td>0QA</td>
<td>F</td>
<td>502</td>
<td>2</td>
<td>-</td>
<td>0/12/12/12</td>
<td>0/1/1/1</td>
</tr>
<tr>
<td>2</td>
<td>HEM</td>
<td>G</td>
<td>501</td>
<td>1</td>
<td>-</td>
<td>0/6/54/54</td>
<td>0/0/8/8</td>
</tr>
<tr>
<td>4</td>
<td>GOL</td>
<td>G</td>
<td>502</td>
<td>-</td>
<td>-</td>
<td>0/4/4/4</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>2</td>
<td>HEM</td>
<td>H</td>
<td>501</td>
<td>1</td>
<td>-</td>
<td>0/6/54/54</td>
<td>0/0/8/8</td>
</tr>
<tr>
<td>4</td>
<td>GOL</td>
<td>H</td>
<td>502</td>
<td>-</td>
<td>-</td>
<td>0/4/4/4</td>
<td>0/0/0/0</td>
</tr>
</tbody>
</table>
All (67) bond length outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(Å)</th>
<th>Ideal(Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>B</td>
<td>501</td>
<td>HEM</td>
<td>C3C-C2C</td>
<td>-6.30</td>
<td>1.32</td>
<td>1.40</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>501</td>
<td>HEM</td>
<td>C3C-C2C</td>
<td>-5.93</td>
<td>1.32</td>
<td>1.40</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>501</td>
<td>HEM</td>
<td>C3B-C2B</td>
<td>-5.84</td>
<td>1.32</td>
<td>1.40</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>501</td>
<td>HEM</td>
<td>C3C-C2C</td>
<td>-5.82</td>
<td>1.32</td>
<td>1.40</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>501</td>
<td>HEM</td>
<td>C3B-C2B</td>
<td>-5.81</td>
<td>1.32</td>
<td>1.40</td>
</tr>
<tr>
<td>2</td>
<td>G</td>
<td>501</td>
<td>HEM</td>
<td>C3C-C2C</td>
<td>-5.30</td>
<td>1.33</td>
<td>1.40</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>501</td>
<td>HEM</td>
<td>C3C-C2C</td>
<td>-5.23</td>
<td>1.33</td>
<td>1.40</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>501</td>
<td>HEM</td>
<td>C3C-C2C</td>
<td>-4.93</td>
<td>1.33</td>
<td>1.40</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>501</td>
<td>HEM</td>
<td>C3C-C2C</td>
<td>-4.72</td>
<td>1.34</td>
<td>1.40</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>501</td>
<td>HEM</td>
<td>C3B-C2B</td>
<td>-4.70</td>
<td>1.34</td>
<td>1.40</td>
</tr>
<tr>
<td>2</td>
<td>G</td>
<td>501</td>
<td>HEM</td>
<td>C3B-C2B</td>
<td>-4.65</td>
<td>1.34</td>
<td>1.40</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>501</td>
<td>HEM</td>
<td>C3B-C2B</td>
<td>-4.60</td>
<td>1.34</td>
<td>1.40</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>501</td>
<td>HEM</td>
<td>C3C-C2C</td>
<td>-4.55</td>
<td>1.34</td>
<td>1.40</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>501</td>
<td>HEM</td>
<td>C3B-C2B</td>
<td>-4.33</td>
<td>1.34</td>
<td>1.40</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>501</td>
<td>HEM</td>
<td>C3B-C2B</td>
<td>-4.78</td>
<td>1.35</td>
<td>1.40</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>501</td>
<td>HEM</td>
<td>C3B-C2B</td>
<td>-3.29</td>
<td>1.36</td>
<td>1.40</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>501</td>
<td>HEM</td>
<td>C4B-CHC</td>
<td>-2.55</td>
<td>1.33</td>
<td>1.40</td>
</tr>
<tr>
<td>4</td>
<td>H</td>
<td>502</td>
<td>GOL</td>
<td>O2-C2</td>
<td>-2.21</td>
<td>1.36</td>
<td>1.43</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>501</td>
<td>HEM</td>
<td>C4A-CHB</td>
<td>-2.19</td>
<td>1.34</td>
<td>1.40</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>501</td>
<td>HEM</td>
<td>CAA-C2A</td>
<td>2.02</td>
<td>1.55</td>
<td>1.52</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>501</td>
<td>HEM</td>
<td>CMB-C2B</td>
<td>2.09</td>
<td>1.56</td>
<td>1.51</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>501</td>
<td>HEM</td>
<td>CMD-C2D</td>
<td>2.11</td>
<td>1.55</td>
<td>1.51</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>501</td>
<td>HEM</td>
<td>CMD-C2D</td>
<td>2.14</td>
<td>1.56</td>
<td>1.51</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>501</td>
<td>HEM</td>
<td>CMD-C2D</td>
<td>2.16</td>
<td>1.56</td>
<td>1.51</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>501</td>
<td>HEM</td>
<td>CMB-C2B</td>
<td>2.16</td>
<td>1.56</td>
<td>1.51</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>501</td>
<td>HEM</td>
<td>CMD-C2D</td>
<td>2.19</td>
<td>1.56</td>
<td>1.51</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>501</td>
<td>HEM</td>
<td>CMA-C3A</td>
<td>2.20</td>
<td>1.56</td>
<td>1.51</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>501</td>
<td>HEM</td>
<td>CMC-C2C</td>
<td>2.35</td>
<td>1.56</td>
<td>1.51</td>
</tr>
<tr>
<td>2</td>
<td>G</td>
<td>501</td>
<td>HEM</td>
<td>C4C-NC</td>
<td>2.40</td>
<td>1.39</td>
<td>1.36</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>501</td>
<td>HEM</td>
<td>CMB-C2B</td>
<td>2.41</td>
<td>1.56</td>
<td>1.51</td>
</tr>
<tr>
<td>2</td>
<td>G</td>
<td>501</td>
<td>HEM</td>
<td>CMB-C2B</td>
<td>2.45</td>
<td>1.56</td>
<td>1.51</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>501</td>
<td>HEM</td>
<td>CMB-C2B</td>
<td>2.49</td>
<td>1.56</td>
<td>1.51</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>501</td>
<td>HEM</td>
<td>CMA-C3A</td>
<td>2.49</td>
<td>1.56</td>
<td>1.51</td>
</tr>
<tr>
<td>2</td>
<td>G</td>
<td>501</td>
<td>HEM</td>
<td>CAA-C2A</td>
<td>2.70</td>
<td>1.56</td>
<td>1.52</td>
</tr>
<tr>
<td>2</td>
<td>G</td>
<td>501</td>
<td>HEM</td>
<td>C4D-ND</td>
<td>2.73</td>
<td>1.40</td>
<td>1.36</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>501</td>
<td>HEM</td>
<td>CAA-C2A</td>
<td>2.83</td>
<td>1.56</td>
<td>1.52</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>501</td>
<td>HEM</td>
<td>CMB-C2B</td>
<td>2.85</td>
<td>1.57</td>
<td>1.51</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>501</td>
<td>HEM</td>
<td>C4D-ND</td>
<td>2.89</td>
<td>1.40</td>
<td>1.36</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>501</td>
<td>HEM</td>
<td>CMA-C3A</td>
<td>2.92</td>
<td>1.57</td>
<td>1.51</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>501</td>
<td>HEM</td>
<td>C3B-CAB</td>
<td>2.93</td>
<td>1.53</td>
<td>1.47</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>501</td>
<td>HEM</td>
<td>CAA-C2A</td>
<td>3.05</td>
<td>1.57</td>
<td>1.52</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>501</td>
<td>HEM</td>
<td>C3B-CAB</td>
<td>3.06</td>
<td>1.54</td>
<td>1.47</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(Å)</th>
<th>Ideal(Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>F</td>
<td>501</td>
<td>HEM</td>
<td>C3B-CAB</td>
<td>3.34</td>
<td>1.54</td>
<td>1.47</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>501</td>
<td>HEM</td>
<td>CAA-C2A</td>
<td>3.41</td>
<td>1.57</td>
<td>1.52</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>501</td>
<td>HEM</td>
<td>C3C-CAC</td>
<td>3.44</td>
<td>1.54</td>
<td>1.47</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>501</td>
<td>HEM</td>
<td>C3C-CAC</td>
<td>3.49</td>
<td>1.54</td>
<td>1.47</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>501</td>
<td>HEM</td>
<td>CMD-C2D</td>
<td>3.50</td>
<td>1.58</td>
<td>1.51</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>501</td>
<td>HEM</td>
<td>C3D-C2D</td>
<td>3.75</td>
<td>1.48</td>
<td>1.37</td>
</tr>
<tr>
<td>2</td>
<td>G</td>
<td>501</td>
<td>HEM</td>
<td>C3B-CAB</td>
<td>3.77</td>
<td>1.55</td>
<td>1.47</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>501</td>
<td>HEM</td>
<td>C3D-C2D</td>
<td>3.80</td>
<td>1.48</td>
<td>1.37</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>501</td>
<td>HEM</td>
<td>C3B-CAB</td>
<td>3.83</td>
<td>1.55</td>
<td>1.47</td>
</tr>
<tr>
<td>2</td>
<td>G</td>
<td>501</td>
<td>HEM</td>
<td>C3C-CAC</td>
<td>3.85</td>
<td>1.55</td>
<td>1.47</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>501</td>
<td>HEM</td>
<td>CMA-C3A</td>
<td>3.99</td>
<td>1.59</td>
<td>1.51</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>501</td>
<td>HEM</td>
<td>C3C-CAC</td>
<td>4.04</td>
<td>1.55</td>
<td>1.47</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>501</td>
<td>HEM</td>
<td>C3B-CAB</td>
<td>4.05</td>
<td>1.55</td>
<td>1.47</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>501</td>
<td>HEM</td>
<td>C3B-CAB</td>
<td>4.05</td>
<td>1.55</td>
<td>1.47</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>501</td>
<td>HEM</td>
<td>C3B-CAB</td>
<td>4.07</td>
<td>1.56</td>
<td>1.47</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>501</td>
<td>HEM</td>
<td>C3C-CAC</td>
<td>4.13</td>
<td>1.55</td>
<td>1.47</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>501</td>
<td>HEM</td>
<td>C3C-CAC</td>
<td>4.16</td>
<td>1.56</td>
<td>1.47</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>501</td>
<td>HEM</td>
<td>C3C-CAC</td>
<td>4.68</td>
<td>1.57</td>
<td>1.47</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>501</td>
<td>HEM</td>
<td>C3D-C2D</td>
<td>4.82</td>
<td>1.51</td>
<td>1.37</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>501</td>
<td>HEM</td>
<td>C3C-CAC</td>
<td>4.82</td>
<td>1.57</td>
<td>1.47</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>501</td>
<td>HEM</td>
<td>C3D-C2D</td>
<td>5.19</td>
<td>1.53</td>
<td>1.37</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>501</td>
<td>HEM</td>
<td>C3D-C2D</td>
<td>5.37</td>
<td>1.53</td>
<td>1.37</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>501</td>
<td>HEM</td>
<td>C3D-C2D</td>
<td>5.38</td>
<td>1.53</td>
<td>1.37</td>
</tr>
<tr>
<td>2</td>
<td>G</td>
<td>501</td>
<td>HEM</td>
<td>C3D-C2D</td>
<td>5.73</td>
<td>1.54</td>
<td>1.37</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>501</td>
<td>HEM</td>
<td>C3D-C2D</td>
<td>5.90</td>
<td>1.55</td>
<td>1.37</td>
</tr>
</tbody>
</table>

All (56) bond angle outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(°)</th>
<th>Ideal(°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>B</td>
<td>501</td>
<td>HEM</td>
<td>C1D-C2D-C3D</td>
<td>-5.39</td>
<td>103.25</td>
<td>107.00</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>501</td>
<td>HEM</td>
<td>CAA-CBA-CGA</td>
<td>-5.36</td>
<td>103.50</td>
<td>112.66</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>501</td>
<td>HEM</td>
<td>CBD-CAD-C3D</td>
<td>-4.98</td>
<td>102.97</td>
<td>112.47</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>502</td>
<td>0QA</td>
<td>C9-C8-C7</td>
<td>-4.76</td>
<td>100.96</td>
<td>112.06</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>501</td>
<td>HEM</td>
<td>C1D-C2D-C3D</td>
<td>-4.65</td>
<td>103.76</td>
<td>107.00</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>502</td>
<td>0QA</td>
<td>C8-C7-C6</td>
<td>-4.62</td>
<td>104.99</td>
<td>113.57</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>502</td>
<td>0QA</td>
<td>C8-C7-C6</td>
<td>-4.59</td>
<td>105.04</td>
<td>113.57</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>501</td>
<td>HEM</td>
<td>CAA-CBA-CGA</td>
<td>-4.39</td>
<td>105.16</td>
<td>112.66</td>
</tr>
<tr>
<td>4</td>
<td>H</td>
<td>502</td>
<td>GOL</td>
<td>O3-C3-C2</td>
<td>-4.27</td>
<td>88.56</td>
<td>110.07</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>501</td>
<td>HEM</td>
<td>CBD-CAD-C3D</td>
<td>-3.92</td>
<td>104.98</td>
<td>112.47</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>501</td>
<td>HEM</td>
<td>CAA-CBA-CGA</td>
<td>-3.88</td>
<td>106.03</td>
<td>112.66</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>501</td>
<td>HEM</td>
<td>CAA-CBA-CGA</td>
<td>-3.78</td>
<td>106.20</td>
<td>112.66</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>502</td>
<td>0QA</td>
<td>C8-C7-C6</td>
<td>-3.54</td>
<td>106.99</td>
<td>113.57</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(°)</th>
<th>Ideal(°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>C</td>
<td>502</td>
<td>0QA</td>
<td>C8-C7-C6</td>
<td>-3.54</td>
<td>107.00</td>
<td>113.57</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>502</td>
<td>0QA</td>
<td>C9-C8-C7</td>
<td>-3.30</td>
<td>104.36</td>
<td>112.06</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>501</td>
<td>HEM</td>
<td>C1D-C2D-C3D</td>
<td>-3.28</td>
<td>104.71</td>
<td>107.00</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>501</td>
<td>HEM</td>
<td>CAD-CBD-CGD</td>
<td>-3.13</td>
<td>107.30</td>
<td>112.66</td>
</tr>
<tr>
<td>2</td>
<td>G</td>
<td>501</td>
<td>HEM</td>
<td>CMA-C3A-C4A</td>
<td>-3.07</td>
<td>123.75</td>
<td>128.46</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>502</td>
<td>0QA</td>
<td>C5-C4-N1</td>
<td>-2.88</td>
<td>119.05</td>
<td>123.45</td>
</tr>
<tr>
<td>4</td>
<td>H</td>
<td>502</td>
<td>GOL</td>
<td>O2-C2-C3</td>
<td>-2.86</td>
<td>95.33</td>
<td>108.84</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>501</td>
<td>HEM</td>
<td>CMA-C3A-C4A</td>
<td>-2.78</td>
<td>124.19</td>
<td>128.46</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>502</td>
<td>0QA</td>
<td>C8-C7-C6</td>
<td>-2.75</td>
<td>108.46</td>
<td>113.57</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>501</td>
<td>HEM</td>
<td>CBD-CAD-C3D</td>
<td>-2.66</td>
<td>107.39</td>
<td>112.47</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>502</td>
<td>0QA</td>
<td>C8-C7-C6</td>
<td>-2.59</td>
<td>108.75</td>
<td>113.57</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>501</td>
<td>HEM</td>
<td>CBD-CAD-C3D</td>
<td>-2.57</td>
<td>107.57</td>
<td>112.47</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>501</td>
<td>HEM</td>
<td>CBD-CAD-C3D</td>
<td>-2.51</td>
<td>107.57</td>
<td>112.47</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>501</td>
<td>HEM</td>
<td>CMA-C3A-C4A</td>
<td>-2.43</td>
<td>107.11</td>
<td>110.94</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>501</td>
<td>HEM</td>
<td>CMA-C3A-C4A</td>
<td>-2.37</td>
<td>108.61</td>
<td>112.66</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>501</td>
<td>HEM</td>
<td>CMD-C2D-C1D</td>
<td>-2.34</td>
<td>124.87</td>
<td>128.46</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>502</td>
<td>0QA</td>
<td>C5-C4-N1</td>
<td>-2.34</td>
<td>119.88</td>
<td>123.45</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>502</td>
<td>0QA</td>
<td>C5-C4-N1</td>
<td>-2.31</td>
<td>119.91</td>
<td>123.45</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>501</td>
<td>HEM</td>
<td>C1D-C2D-C3D</td>
<td>-2.29</td>
<td>105.40</td>
<td>107.00</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>501</td>
<td>HEM</td>
<td>C3C-C4C-NC</td>
<td>-2.13</td>
<td>106.92</td>
<td>110.94</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>501</td>
<td>HEM</td>
<td>C3C-C4C-NC</td>
<td>-2.03</td>
<td>107.11</td>
<td>110.94</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>502</td>
<td>0QA</td>
<td>C5-C4-N1</td>
<td>-2.00</td>
<td>120.39</td>
<td>123.45</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>502</td>
<td>0QA</td>
<td>C5-C4-N1</td>
<td>-2.00</td>
<td>120.39</td>
<td>123.45</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>502</td>
<td>0QA</td>
<td>O2-N3-N2</td>
<td>2.02</td>
<td>119.64</td>
<td>113.34</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>501</td>
<td>HEM</td>
<td>CMD-C2B-C3B</td>
<td>2.05</td>
<td>128.69</td>
<td>124.89</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>501</td>
<td>HEM</td>
<td>C4C-C3C-C2C</td>
<td>2.11</td>
<td>108.37</td>
<td>106.90</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>501</td>
<td>HEM</td>
<td>CMD-C2B-C3B</td>
<td>2.14</td>
<td>128.87</td>
<td>124.89</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>501</td>
<td>HEM</td>
<td>CMD-C2D-C3D</td>
<td>2.20</td>
<td>129.10</td>
<td>124.94</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>502</td>
<td>0QA</td>
<td>C3-N1-C4</td>
<td>2.27</td>
<td>120.81</td>
<td>116.83</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>502</td>
<td>0QA</td>
<td>C1-C5-C4</td>
<td>2.29</td>
<td>120.29</td>
<td>117.66</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>502</td>
<td>0QA</td>
<td>C3-N1-C4</td>
<td>2.30</td>
<td>120.85</td>
<td>116.83</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>502</td>
<td>0QA</td>
<td>C3-N1-C4</td>
<td>2.30</td>
<td>120.86</td>
<td>116.83</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>502</td>
<td>0QA</td>
<td>C1-C5-C4</td>
<td>2.31</td>
<td>120.31</td>
<td>117.66</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>502</td>
<td>0QA</td>
<td>C1-C5-C4</td>
<td>2.36</td>
<td>120.37</td>
<td>117.66</td>
</tr>
<tr>
<td>2</td>
<td>G</td>
<td>501</td>
<td>HEM</td>
<td>CMD-C2B-C3B</td>
<td>2.42</td>
<td>129.38</td>
<td>124.89</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>501</td>
<td>HEM</td>
<td>CMD-C2D-C1D</td>
<td>2.45</td>
<td>132.23</td>
<td>128.46</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>501</td>
<td>HEM</td>
<td>C4C-C3C-C2C</td>
<td>2.48</td>
<td>108.63</td>
<td>106.90</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>501</td>
<td>HEM</td>
<td>CMD-C2D-C3D</td>
<td>2.62</td>
<td>129.87</td>
<td>124.94</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>502</td>
<td>0QA</td>
<td>C3-N1-C4</td>
<td>2.74</td>
<td>121.62</td>
<td>116.83</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>502</td>
<td>0QA</td>
<td>C3-N1-C4</td>
<td>2.74</td>
<td>121.63</td>
<td>116.83</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>502</td>
<td>0QA</td>
<td>C3-N1-C4</td>
<td>2.93</td>
<td>121.96</td>
<td>116.83</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>501</td>
<td>HEM</td>
<td>CMD-C2B-C3B</td>
<td>3.34</td>
<td>131.09</td>
<td>124.89</td>
</tr>
</tbody>
</table>
There are no chirality outliers.

All (1) torsion outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(°)</th>
<th>Ideal(°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>C</td>
<td>501</td>
<td>HEM</td>
<td>C4C-C3C-C2C</td>
<td>3.98</td>
<td>109.68</td>
<td>106.90</td>
</tr>
</tbody>
</table>

There are no ring outliers.

15 monomers are involved in 57 short contacts:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Clashes</th>
<th>Symm-Clashes</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>A</td>
<td>501</td>
<td>HEM</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>502</td>
<td>0QA</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>501</td>
<td>HEM</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>502</td>
<td>0QA</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>501</td>
<td>HEM</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>502</td>
<td>0QA</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>501</td>
<td>HEM</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>502</td>
<td>0QA</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>501</td>
<td>HEM</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>502</td>
<td>0QA</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>501</td>
<td>HEM</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>502</td>
<td>0QA</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>G</td>
<td>501</td>
<td>HEM</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>G</td>
<td>502</td>
<td>GOL</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>501</td>
<td>HEM</td>
<td>6</td>
<td>0</td>
</tr>
</tbody>
</table>

5.7 Other polymers

There are no such residues in this entry.

5.8 Polymer linkage issues

There are no chain breaks in this entry.
6 Fit of model and data

6.1 Protein, DNA and RNA chains

In the following table, the column labelled ‘#RSRZ>2’ contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95th percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled ‘Q<0.9’ lists the number of (and percentage) of residues with an average occupancy less than 0.9.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Analysed</th>
<th><RSRZ></th>
<th>#RSRZ>2</th>
<th>OWAB(Å²)</th>
<th>Q<0.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>464/476 (97%)</td>
<td>0.22</td>
<td>0</td>
<td>20, 35, 53, 63</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>464/476 (97%)</td>
<td>0.22</td>
<td>0</td>
<td>19, 35, 54, 62</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>464/476 (97%)</td>
<td>0.17</td>
<td>1</td>
<td>19, 33, 48, 58</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>464/476 (97%)</td>
<td>0.20</td>
<td>1</td>
<td>17, 35, 55, 63</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>464/476 (97%)</td>
<td>0.26</td>
<td>12</td>
<td>27, 48, 70, 78</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>464/476 (97%)</td>
<td>0.63</td>
<td>30</td>
<td>27, 60, 85, 91</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>463/476 (97%)</td>
<td>0.66</td>
<td>34</td>
<td>29, 59, 78, 88</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>459/476 (96%)</td>
<td>1.01</td>
<td>89</td>
<td>28, 71, 92, 96</td>
<td>0</td>
</tr>
<tr>
<td>All</td>
<td>All</td>
<td>3706/3808 (97%)</td>
<td>0.42</td>
<td>167</td>
<td>17, 44, 81, 96</td>
<td>0</td>
</tr>
</tbody>
</table>

All (167) RSRZ outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>RSRZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>G</td>
<td>141</td>
<td>GLY</td>
<td>6.4</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>491</td>
<td>PHE</td>
<td>6.0</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>491</td>
<td>PHE</td>
<td>5.2</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>453</td>
<td>PHE</td>
<td>4.9</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>468</td>
<td>PRO</td>
<td>4.9</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>419</td>
<td>LYS</td>
<td>4.7</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>141</td>
<td>GLY</td>
<td>4.6</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>491</td>
<td>PHE</td>
<td>4.5</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>168</td>
<td>ILE</td>
<td>4.5</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>273</td>
<td>ILE</td>
<td>4.4</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>172</td>
<td>PHE</td>
<td>4.3</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>416</td>
<td>PHE</td>
<td>4.3</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>420</td>
<td>LYS</td>
<td>4.2</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>343</td>
<td>PHE</td>
<td>4.2</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>206</td>
<td>LEU</td>
<td>4.2</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>317</td>
<td>LEU</td>
<td>4.0</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>RSRZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>H</td>
<td>434</td>
<td>ILE</td>
<td>4.0</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>420</td>
<td>LYS</td>
<td>4.0</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>456</td>
<td>ILE</td>
<td>3.9</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>454</td>
<td>THR</td>
<td>3.8</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>489</td>
<td>MET</td>
<td>3.8</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>133</td>
<td>ALA</td>
<td>3.7</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>452</td>
<td>PHE</td>
<td>3.7</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>156</td>
<td>LEU</td>
<td>3.6</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>165</td>
<td>GLY</td>
<td>3.5</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>406</td>
<td>SER</td>
<td>3.5</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>450</td>
<td>PHE</td>
<td>3.5</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>153</td>
<td>ALA</td>
<td>3.5</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>428</td>
<td>ALA</td>
<td>3.5</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>154</td>
<td>GLY</td>
<td>3.4</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>259</td>
<td>LEU</td>
<td>3.4</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>317</td>
<td>LEU</td>
<td>3.4</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>449</td>
<td>LEU</td>
<td>3.3</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>471</td>
<td>ILE</td>
<td>3.3</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>347</td>
<td>ALA</td>
<td>3.3</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>267</td>
<td>PHE</td>
<td>3.3</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>355</td>
<td>VAL</td>
<td>3.2</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>247</td>
<td>PHE</td>
<td>3.2</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>316</td>
<td>LEU</td>
<td>3.2</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>157</td>
<td>ILE</td>
<td>3.2</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>282</td>
<td>PRO</td>
<td>3.1</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>420</td>
<td>LYS</td>
<td>3.1</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>136</td>
<td>ARG</td>
<td>3.1</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>462</td>
<td>PHE</td>
<td>3.1</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>492</td>
<td>LEU</td>
<td>3.0</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>468</td>
<td>PRO</td>
<td>3.0</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>159</td>
<td>ALA</td>
<td>3.0</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>143</td>
<td>ARG</td>
<td>3.0</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>343</td>
<td>PHE</td>
<td>3.0</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>426</td>
<td>SER</td>
<td>3.0</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>261</td>
<td>PRO</td>
<td>3.0</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>462</td>
<td>PHE</td>
<td>3.0</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>315</td>
<td>LEU</td>
<td>2.9</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>53</td>
<td>GLN</td>
<td>2.9</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>451</td>
<td>LEU</td>
<td>2.9</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>143</td>
<td>ARG</td>
<td>2.9</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>350</td>
<td>PRO</td>
<td>2.9</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>352</td>
<td>THR</td>
<td>2.9</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>RSRZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>E</td>
<td>135</td>
<td>LEU</td>
<td>2.9</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>330</td>
<td>GLU</td>
<td>2.9</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>362</td>
<td>PHE</td>
<td>2.8</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>405</td>
<td>PHE</td>
<td>2.8</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>288</td>
<td>LEU</td>
<td>2.8</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>173</td>
<td>PHE</td>
<td>2.8</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>323</td>
<td>VAL</td>
<td>2.8</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>188</td>
<td>GLY</td>
<td>2.8</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>427</td>
<td>ASP</td>
<td>2.8</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>351</td>
<td>TYR</td>
<td>2.8</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>261</td>
<td>PRO</td>
<td>2.7</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>412</td>
<td>ASN</td>
<td>2.7</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>464</td>
<td>SER</td>
<td>2.7</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>98</td>
<td>PHE</td>
<td>2.7</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>271</td>
<td>PHE</td>
<td>2.7</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>334</td>
<td>VAL</td>
<td>2.7</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>430</td>
<td>VAL</td>
<td>2.7</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>447</td>
<td>MET</td>
<td>2.7</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>161</td>
<td>ARG</td>
<td>2.7</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>333</td>
<td>ARG</td>
<td>2.7</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>263</td>
<td>SER</td>
<td>2.7</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>326</td>
<td>LYS</td>
<td>2.7</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>191</td>
<td>PHE</td>
<td>2.7</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>461</td>
<td>ARG</td>
<td>2.6</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>483</td>
<td>ILE</td>
<td>2.6</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>189</td>
<td>ASP</td>
<td>2.6</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>140</td>
<td>VAL</td>
<td>2.6</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>408</td>
<td>PRO</td>
<td>2.6</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>417</td>
<td>LEU</td>
<td>2.6</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>340</td>
<td>GLN</td>
<td>2.6</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>213</td>
<td>ALA</td>
<td>2.6</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>329</td>
<td>GLU</td>
<td>2.5</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>463</td>
<td>LYS</td>
<td>2.5</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>476</td>
<td>LYS</td>
<td>2.5</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>138</td>
<td>PHE</td>
<td>2.5</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>282</td>
<td>PRO</td>
<td>2.5</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>211</td>
<td>PHE</td>
<td>2.5</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>280</td>
<td>LYS</td>
<td>2.5</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>348</td>
<td>LYS</td>
<td>2.5</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>135</td>
<td>LEU</td>
<td>2.5</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>338</td>
<td>ASN</td>
<td>2.4</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>469</td>
<td>LYS</td>
<td>2.4</td>
</tr>
</tbody>
</table>

Continued on next page...
<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>RSRZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>G</td>
<td>218</td>
<td>GLN</td>
<td>2.4</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>173</td>
<td>PHE</td>
<td>2.4</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>138</td>
<td>PHE</td>
<td>2.4</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>185</td>
<td>ILE</td>
<td>2.4</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>280</td>
<td>LYS</td>
<td>2.4</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>202</td>
<td>LEU</td>
<td>2.4</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>363</td>
<td>GLY</td>
<td>2.4</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>263</td>
<td>SER</td>
<td>2.4</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>325</td>
<td>ALA</td>
<td>2.4</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>475</td>
<td>PRO</td>
<td>2.4</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>472</td>
<td>ASP</td>
<td>2.3</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>145</td>
<td>ILE</td>
<td>2.3</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>352</td>
<td>THR</td>
<td>2.3</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>447</td>
<td>MET</td>
<td>2.3</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>157</td>
<td>ILE</td>
<td>2.3</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>187</td>
<td>PHE</td>
<td>2.3</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>174</td>
<td>LEU</td>
<td>2.3</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>259</td>
<td>LEU</td>
<td>2.3</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>177</td>
<td>THR</td>
<td>2.3</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>493</td>
<td>PRO</td>
<td>2.3</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>189</td>
<td>ASP</td>
<td>2.3</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>480</td>
<td>PHE</td>
<td>2.3</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>264</td>
<td>PRO</td>
<td>2.3</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>280</td>
<td>LYS</td>
<td>2.3</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>456</td>
<td>ILE</td>
<td>2.3</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>450</td>
<td>PHE</td>
<td>2.2</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>327</td>
<td>VAL</td>
<td>2.2</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>423</td>
<td>PHE</td>
<td>2.2</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>402</td>
<td>PRO</td>
<td>2.2</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>153</td>
<td>ALA</td>
<td>2.2</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>419</td>
<td>LYS</td>
<td>2.2</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>411</td>
<td>PHE</td>
<td>2.2</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>348</td>
<td>LYS</td>
<td>2.2</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>461</td>
<td>ARG</td>
<td>2.2</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>420</td>
<td>LYS</td>
<td>2.2</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>403</td>
<td>ARG</td>
<td>2.2</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>137</td>
<td>GLY</td>
<td>2.2</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>158</td>
<td>ASP</td>
<td>2.2</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>463</td>
<td>LYS</td>
<td>2.2</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>335</td>
<td>ILE</td>
<td>2.2</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>204</td>
<td>MET</td>
<td>2.2</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>144</td>
<td>GLY</td>
<td>2.2</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>RSRZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>F</td>
<td>198</td>
<td>PHE</td>
<td>2.1</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>182</td>
<td>ILE</td>
<td>2.1</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>471</td>
<td>ILE</td>
<td>2.1</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>460</td>
<td>PHE</td>
<td>2.1</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>309</td>
<td>THR</td>
<td>2.1</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>453</td>
<td>PHE</td>
<td>2.1</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>348</td>
<td>LYS</td>
<td>2.1</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>473</td>
<td>VAL</td>
<td>2.1</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>318</td>
<td>MET</td>
<td>2.1</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>487</td>
<td>TYR</td>
<td>2.1</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>147</td>
<td>GLU</td>
<td>2.1</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>368</td>
<td>MET</td>
<td>2.1</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>469</td>
<td>LYS</td>
<td>2.1</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>187</td>
<td>PHE</td>
<td>2.1</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>414</td>
<td>GLN</td>
<td>2.0</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>315</td>
<td>LEU</td>
<td>2.0</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>346</td>
<td>ARG</td>
<td>2.0</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>365</td>
<td>MET</td>
<td>2.0</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>421</td>
<td>GLY</td>
<td>2.0</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>210</td>
<td>GLN</td>
<td>2.0</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>187</td>
<td>PHE</td>
<td>2.0</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>419</td>
<td>LYS</td>
<td>2.0</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>337</td>
<td>LYS</td>
<td>2.0</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>474</td>
<td>SER</td>
<td>2.0</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>90</td>
<td>ALA</td>
<td>2.0</td>
</tr>
</tbody>
</table>

6.2 Non-standard residues in protein, DNA, RNA chains

There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates

There are no carbohydrates in this entry.

6.4 Ligands

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. LLDF column lists the quality of electron density of the group with respect to its neighbouring residues in protein, DNA or RNA chains. The B-factors column lists the minimum, median, 95th percentile and maximum values of B factors.
of atoms in the group. The column labelled ‘Q< 0.9’ lists the number of atoms with occupancy less than 0.9.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Type</th>
<th>Chain</th>
<th>Res</th>
<th>Atoms</th>
<th>RSCC</th>
<th>RSR</th>
<th>LLDF</th>
<th>B-factors(Å²)</th>
<th>Q<0.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>GOL</td>
<td>H</td>
<td>502</td>
<td>6/6</td>
<td>0.94</td>
<td>0.27</td>
<td>6.75</td>
<td>33,36,42,50</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>OQA</td>
<td>F</td>
<td>502</td>
<td>15/15</td>
<td>0.90</td>
<td>0.36</td>
<td>5.32</td>
<td>84,85,86,87</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>OQA</td>
<td>C</td>
<td>502</td>
<td>15/15</td>
<td>0.91</td>
<td>0.22</td>
<td>4.88</td>
<td>48,55,58,67</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>OQA</td>
<td>E</td>
<td>502</td>
<td>15/15</td>
<td>0.90</td>
<td>0.29</td>
<td>4.57</td>
<td>71,74,76,78</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>OQA</td>
<td>A</td>
<td>502</td>
<td>15/15</td>
<td>0.94</td>
<td>0.24</td>
<td>4.08</td>
<td>57,62,71,72</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>OQA</td>
<td>B</td>
<td>502</td>
<td>15/15</td>
<td>0.91</td>
<td>0.21</td>
<td>2.20</td>
<td>42,51,59,59</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>OQA</td>
<td>D</td>
<td>502</td>
<td>15/15</td>
<td>0.94</td>
<td>0.21</td>
<td>2.17</td>
<td>48,55,58,67</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>HEM</td>
<td>A</td>
<td>501</td>
<td>43/43</td>
<td>0.98</td>
<td>0.17</td>
<td>0.74</td>
<td>21,27,31,36</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>HEM</td>
<td>B</td>
<td>501</td>
<td>43/43</td>
<td>0.98</td>
<td>0.17</td>
<td>0.44</td>
<td>18,25,29,32</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>HEM</td>
<td>D</td>
<td>501</td>
<td>43/43</td>
<td>0.98</td>
<td>0.16</td>
<td>0.24</td>
<td>18,26,29,30</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>HEM</td>
<td>E</td>
<td>501</td>
<td>43/43</td>
<td>0.98</td>
<td>0.15</td>
<td>-0.10</td>
<td>30,35,37,39</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>HEM</td>
<td>C</td>
<td>501</td>
<td>43/43</td>
<td>0.98</td>
<td>0.15</td>
<td>-0.18</td>
<td>12,22,27,28</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>HEM</td>
<td>F</td>
<td>501</td>
<td>43/43</td>
<td>0.97</td>
<td>0.16</td>
<td>-0.20</td>
<td>37,49,54,59</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>GOL</td>
<td>G</td>
<td>502</td>
<td>6/6</td>
<td>0.92</td>
<td>0.16</td>
<td>-0.31</td>
<td>54,56,58,58</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>HEM</td>
<td>H</td>
<td>501</td>
<td>43/43</td>
<td>0.96</td>
<td>0.16</td>
<td>-0.43</td>
<td>47,52,60,63</td>
<td>0</td>
</tr>
</tbody>
</table>

6.5 Other polymers

There are no such residues in this entry.